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Abstract

This thesis discusses medial skeleton representations of labyrinthine domains. These

generalised channel-graph representations succinctly characterise both topology and

geometry of bicontinuous space partitions and provide quantitative measures of ex-

trinsic packing properties beyond volume-to-surface ratios. Analyses are presented

of infinite periodic minimal surfaces as model structures for bicontinuous liquid crys-

talline mesophases and of electron-tomography data of a novel triblock copolymer

network phase.

We describe the construction of both a geometrically-centered 1D line graph and a 2D

medial surface skeleton of 3D labyrinthine domains. The medial surface is a branched

surface structure centered within the domain, resulting from collapse of parallel sur-

faces of the domain’s bounding surface S. Together with an associated distance func-

tion it affords a complete geometric description, that means the domain can be re-

constructed from it as a union of balls centered on the MS. The radius of these balls

provides a concise definition of local channel thickness.

We use the variations of the ball radii l to quantify packing homogeneity (as opposed to

curvature homogeneity) of labyrinthine domains in E3 . We define the degree of pack-

ing homogeneity as the width of the distribution of l over S, with perfect homogeneity

corresponding to constant l. The average hli can be interpreted as the average channel

diameter, allowing for the definition of an average shape parameter hli=(V=A). These

concepts are applicable to self-assembly processes of liquid crystalline mesophases

from nearly mono-disperse building blocks of typical molecular dimensions.

Analyses are presented for families of infinite periodic minimal surfaces. Among the

cubic Primitive, Diamond and Gyroid surfaces and their tetragonal and rhombohe-

dral distortions, the cubic Gyroid is shown to be the most homogeneous, for various

physically motivated normalisations of the length scale.

We describe Voronoi-based algorithms for MS computations of triangulated surface

data, including a novel adaption particularly suitable for exact data from mathemati-

cal parameterisations. An algorithm to obtain evenly triangulated representations of

surfaces is also described.

The medial surface construction is also successfully applied to the interpretation of

electron-tomography data of a novel symmetric but non-cubic network phase (or-



viii

thorhombic symmetryFddd) in a linear triblock copolymer melt. This analysis demon-

strates that the medial surface is a useful tool for spatial structure recognition of space-

filling hyperbolic structures as it combines complete geometric and topological de-

scription with the spatial sparsity of its representation (as compared to the bounding

surface). This holds true despite its sensitivity to noise.

The network phase identified in a PS-block-PI-block-PDMS copolymer blend consists

of two identical intertwined networks of eight-rings with three- and four-coordinated

nodes (”tfa” in O’Keeffe’s notation) with likely symmetry Fddd and c/a ratio of about

4. It is different from another Fddd phase (based on a single three-coordinated net-

work) recently proposed for a similar system [54].

Date of this version: 19 September 2006, with small changes compared to the accepted

version of this thesis
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Chapter 1

Introduction

Mazes or labyrinths in three-dimensional space at small length scales, regular or dis-

ordered, are ubiquitous as the spatial structure in physical systems. Examples in-

clude bicontinuous liquid crystalline mesophases in mixtures of water and lipids or

surfactants [140, 141, 69, 124, 14, 125], self-assembled copolymer blends [86, 209], late

stage spinodal decomposition in polymer blends [105], biomineralisation in sea urchin

skeletons [159], periodic chitin structures with photonic bandgaps in butterfly wings

[6], synthetic photonic crystals [147] and the alveolar surface of the lung [126]. In

these processes, the system adopts a labyrinthine structure because it represents the

minimal energy configuration. The emergence of these apparently complex structures

is often called self-assembly.

Other interesting physical processes take place inside a labyrinth and are crucially

influenced by the labyrinthine geometry, but do not alter the shape of the labyrinth.

These include many phenomena in and properties of porous materials, such as per-

meability [104], two-phase flow [118] or capillary condensation.

While there are irregular and disordered labyrinths where the channels vary greatly

in size, shape and channel connectivity, there are also highly regular, periodic and

symmetric labyrinth structures. This thesis is mostly concerned with this second

type. An important class of regular labyrinths is given by the family of infinite periodic

minimal surfaces (IPMS): These are surfaces that partition space into two intertwined

labyrinths, one on either side of the surface. They are periodic in three linearly inde-

pendent directions in Euclidean space and have minimal surface area (in a variational

sense). Because of the fact that IPMS divide space into two labyrinths, each of which

is a continuous subset of E3 , they are called bicontinuous. Fig. 1.1 shows their most

prominent member, the so-called Gyroid surface.

A succinct, and physically relevant, geometric and topological description of these

mazes is surprisingly difficult. Commonly labyrinths are represented as the sub-



2 Introduction

(a) (b)

Figure 1.1: The Gyroid surface as an example for a member of the class of infinite periodic

minimal surfaces. One side of the surface is coloured blue, the other orange. It divides space

into two intertwined labyrinths, one on either side of the surface. The thin black lines represent

the translational unit cell of the cubic space group. (a) Also shown are the line graphs in

either of the two mazes, that are often used as primary descriptor of the labyrinth. While

correctly representing the connectivity of the channel system, they do not capture its geometry

completely. (b) Also shown are the medial surfaces in either of the two mazes. These are

skeletons made up of surface patches rather than lines. They correctly represent both the

topology and geometry, but are obviously not graphs.

volume of space that represents the labyrinth, as the interface that is bounding the

labyrinth channel, or as graphs (or networks or skeletons) that are in some sense

centered in the labyrinths and correctly represent the connectivity of the channels.

Among these, networks of 1D line graphs (Fig. 1.1, a) that only partially capture the

geometry, are distinguished from so-called medial surfaces (Fig. 1.1, b) that fully re-

tain the geometric shape of the channels but are composed of surface patches rather

than 1D curves.

A channel line graph is often the primary description of a labyrinth capturing the

essential characteristics, in particular the connectivity. For a labyrinth that is made

up of channels with circular cross-section (with possibly varying radius) that meet in

well-defined pores, this description is well-suited and even a good representation of

the geometry. Then, the labyrinth itself is an inflated version of the line graph, to be

more precise, the union of spheres of size given by the channel radius along the line

graph. It is however often overlooked that this is a very particular geometry; for a

general labyrinth a line graph is much less well-defined.
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MS

S

d

Figure 1.2: A 2D

labyrinth and its

medial surface.

In order to capture the geometry of a general labyrinth, a skeletal

representation by medial surfaces (MS) is more appropriate. This

structure is the main focus of this thesis, and defined in detail

in section 1.2 and chapter 2. As the line graph, the MS is cen-

tered within the labyrinthine domain, yet it is made up of sur-

face patches. Every point on the MS has a radius d assigned to

it, which gives the maximal radius of the sphere that, placed on

that MS point, is still fully contained within the domain. Again as

the line graph, the labyrinth domain itself is the union of all those

spheres, hence an inflated version of the MS. By virtue of the def-

inition of the radius, the MS also allows a meaningful point-wise

definition of a local channel diameter, see Fig. 1.2.

Especially for IPMS, much research has addressed questions relating to the curvature

properties of labyrinthine surfaces, in particular the Gaussian curvature. Gaussian

and mean curvature are point-wise properties of surfaces S embedded in E3 , derived

from the principal curvatures �1 and �2. For every point p on S, the principal curvatures�1 and �2 are the maximum and minimum of the normal curvature at the point p.

Gaussian curvature K and mean curvature H are then defined asK = �1 � �2 H = 12 (�1 + �2): (1.1)

Minimal surfaces, including IPMS, have vanishing mean curvature H = 0. Both are

properties of the surface, and not of specific parametrisation of the surface (although

the mean curvature changes sign when the orientation changes). See textbooks on

differential geometry for proper definitions of curvature properties [48, 83].

Much of the interest in curvature properties of labyrinthine structures is motivated by

the fact that the “perfect labyrinth”, that is one with constant curvature throughout,

does not exist. The equivalent of the sphere, as the perfect convex body where all

points have the same curvatures, cannot be embedded in euclidean three-space. This

is a consequence of the very general result that a surface of constant negative Gaus-

sian curvature cannot be embedded in E3 [90, 202]. The lack of the perfect labyrinth

implies that any labyrinthine system striving for curvature homogeneity is necessarily

frustrated, see section 1.1 below.

The curvature properties and the channel diameter as defined by the MS construction

are not completely independent of each other (A trivial example is that of a cylinder

where the constant curvature immediately imposes a constant radius on the MS, being

the rotational axis). Curvature variations always imply variations of the local channel
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diameter, but their degrees may be different. This motivates our suggestion to anal-

yse the variations of the channel diameter as an additional homogeneity measure, as

explained below.

1.1 Frustration in Self-assembled mesophases

Self-assembly of lipids and surfactants into labyrinthine surface forms is an example

for a process where the phase diagram can be understood to a large degree by con-

sideration of shape properties of the labyrinthine structure candidates. This section

briefly reviews the origin of frustration in these systems, and outlines the novel ap-

proach taken in this thesis to quantify that frustration.

Self-assembly of liquid crystalline phases of mixtures of amphilic molecules, water

and possibly oil has been widely described using energy functionals that are expan-

sions in the curvature of the interface, due to Canham [25] and Helfrich [87]. The

hydrophobic hydrocarbon chains and the polar hydrophilic headgroups tend to ar-

range in space such that the heads are shielded from the hydrophobic phase, and the

tails shielded from the water. This drives microphase separation which results in oil-

water interfaces lined with amphiphilic molecules.

Among such interfaces are bicontinuous space partitions based on IPMS. So-called

type 2 phases consist of two intertwined water channels that are separated by a bi-

layer of lipid molecules, the polar headgroups towards the channels, the hydrophobic

tails towards the interface surface. A geometric interpretation is that the molecules

(that are assumed to be relatively monodisperse of typical size given by the area A
of the polar headgroup, their individual volume V and the average length of the liq-

uid hydrocarbon chains l) assemble onto surface forms that best fits with their typical

shape. Hence the preference for surface forms with a particular average curvature

and little variations around this average.

As explained above, a unique geometric feature of the bicontinuous geometries is that

they are inherently frustrated because a labyrinthine structure without fluctuations

of curvatures and channel thickness does not exist. As a consequence, a system with

preferred curvature and preferred chain length is necessarily frustrated: two approxi-

mately parallel surfaces (the H = 0 interface and the polar headgroup surface in Type

II systems) either have variations in the curvature and constant distance (real parallel

surfaces), or constant mean curvature at the expense of variations in the thickness [5].

Another early account of the competition of bilayer thickness and curvature is given
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in [176].

Helfrich ascertained that fluctuations of the Gaussian curvature of the IPMS corre-

spond to frustration in Helfrich-Canham systems [88]. Similar results have been ob-

tained more recently that include data for the variations of the Gaussian curvature

[187, 186].

Figure 1.3: Hypothetical

ideal surface with negative

constant K (from [99].)

Hyde et al. introduced and analysed a homogeneity in-

dex H, a scale-invariant parameter relating global prop-

erties V , A and integrated Gaussian curvature (topology)

[95, 99, 66]. It combined scale-invariance with indepen-

dence of the extent of the surface patch on which it is

evaluated (e.g. which unit-cell and how many transla-

tional unit-cells) where the latter was a problem of ear-

lier scale-invariant surface to volume ratios of the formA=V 2=3 [183]. This definition was motivated by the fact

that a fictional hyperbolic partition of constant curvature

(and hence MS distance function or channel diameter) has

the value of 3/4, and on the belief that the absolute value

of deviations from 3/4 corresponded to curvature inhomogeneities. However, since

then it has been found that, for some value of the free parameter, Schwarz’ Hexago-

nal surface has large curvature fluctuations and nevertheless the “ideal” value of 3/4.

Large variations in curvature are balanced by variations of the channel width in a

subtle way to give the ideal H = 3=4.

The fictional perfectly homogeneous minimal surface of constant negative Gaussian

curvature has the property that its focal surfaces (composed of the set of points p +1=pKN(p) where K is the Gaussian curvature, p 2 S and N the surface normal field)

degenerate to a surface of vanishing area, see Fig. 1.1. For infinite periodic minimal

surfaces, the picture is that of parallel surfaces at distance r to the surface collapsing

onto the channel graph for all points on the surface at once, i.e. for a constant value ofr. Space is foliated by identical bricks, bounded by a small patch of a minimal sad-

dle surface and a corresponding small line segment onto which it collapses ...wishful

thinking in a flat three-dimensional Euclidean space!

In this thesis we keep the notion of a space tiling partition of the labyrinthine domain

based on small surface patches and their corresponding volume, but relieve the con-

straint that the length of the space tiles is given by
p�1=K . Instead, it is the maximal

length by which the surface patch can be moved along the surface normal field, before

it encounters the parallel surface of a different patch of the surface. That is exactly the

distance between a point of the surface and its counter-part on the medial surface.
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In this way one obtains a tiling of space into small volume elements. Analysis of

the variations of the shape of these infinitesimally narrow but macroscopically long

volume elements gives two measures for the homogeneity: variations of the wedge

angle corresponding to curvature, and variations of their length (i.e. the MS distance)

providing a measure of global packing homogeneity.

1.2 MS concept to characterise channel geometries

The concepts used in this thesis to characterise the shape of a labyrinthine domain

are those of medial surfaces (MS) and geometrically centered lines. The former is

a centered skeleton of the domain that retains the complete geometric description

of the domain. For 3D domains, it consists of an assembly of 2D surface patches,

with a point-wise defined distance function indicating the distance to original domain

boundary. The union of balls on it with radius equal to the distance function provide

a complete reconstruction of the labyrinthine domain.

The latter is a centered line skeleton consisting in 1D curves through the labyrinth.

The geometric information about the domain shape it retains is equivalent to rep-

resenting the domain as a channel system of tunnels with circular cross-section (of

varying radius).

Medial Surface Transform

The MS construction is illustrated in Figure 1.4 using the analogy of a grassfire trans-

form, from the first description of (2D) medial surfaces [18]. The figure shows a piece

of the Gyroid infinite periodic minimal surface with the outside colored green and its

inside colored orange. The sequence of images (a-f) shows the Gyroid surface with its

interior non-overlapping parallel surfaces (in yellow). These reduced parallel surfaces

are obtained from the Gyroid surface by transport along its surface normal direction

by a distance corresponding to min fr; d(p)g, thus p+minfr; d(p)gN(p). The numberr is the evolution parameter and d(p) indicates the maximal distance by which a point

can be transported along its normals without colliding with another point p2+rN(p2)
(which is when the parallel surfaces first overlap). For large r, where every point has

reached its maximal distance, the structure is the medial surface of the Gyroid domain.

Imagine the domain to be solid and flammable, and its boundary set on fire. A sim-

plified fire burns the material in layers parallel to the boundary. Areas where two fire

fronts collide (or one fire front develops a cusp) mark the end points of the burning
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process. This explains the name “grassfire transform”, created for the 2D analog of

burning a grass field.

The reduced parallel surface is colored yellow wherever r < d(p), and colored accord-

ing to d where points have collapsed. Blue corresponds to the largest values, then

green and yellow, and then red to the smallest (where the only red areas, located on

the fringes of the MS, are hardly visible). In (a-c) no collapse has occured, the reduced

parallel surfaces remain real parallel surfaces. In (d) collapse is starting to occur, yet

the domain inside the reduced parallel surface is still a connected net with the same

topology as the original Gyroid surface. In (e) the collapse is almost complete, the

inside domain is no longer continuous but split into small volumes near the regions

of largest distance. In (f) the collapse is complete. In this case (but not in general), the

MS is almost a ribbon following the three-coordinated Gyroid line graph. The collapse

points with the smallest distance function are on the boundary of the MS.

It is clear from this process that the MS is indeed centered, in the sense of being maxi-

mally distant from the domain walls. It is also clear that all points of MS have two or

more corresponding surface points. These are tangentially touched by spheres around

the MS points of radius given by the distance function.

The details of the MS definition and its computation for numerical manifold repre-

sentations of domain boundaries is described in Chapter 2. The medial surfaces of

the four cubic IPMS are described in detail in Chapter 5, those of non-cubic IPMS in

Chapter 6, and finally those of a labyrinth in an experimental electron-tomography

data set of a block-copolymer phase in Chapter 7.

Geometrically centered line graphs

Upon a first glance, the Gyroid is best described by a network of straight edges meet-

ing in 3-nodes. This is the concept of a line graph. It captures the topology, and a

little of the geometry, but not the cross-sectional shape of the channels. Despite the

apparent simplicity of the concept, it is difficult to define unambiguously.

We analyse a line graph that is required to be geometrically centered. That means

that it has to lie on the MS, but its precise path within the MS is still to be determined.

We keep to the idea of maximising the distance to the original bounding Gyroid sur-

face and analyse the distance topography on the MS. This distance function profile

is indicated by the color scheme on the MS. The obvious analogy to a topography of

a mountain range is helpful, although not quite correct as the MS has in general , in

contrast to the globe, branchlines.
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Nevertheless, paths on the MS that maximise the distance to the bounding surfaces

are analogons to ridges of mountain ranges (where height corresponds to distance

function). Points of minimal distance function along those lines are saddle points of

the distance function on MS. From there, following lines of steepest ascent will lead

necessarily to a maximum.

Thus, determining geometrically centered line graphs reduces to finding saddle points

of the distance function (or distance map) on the MS and following lines of steepest

ascent from those points. This is illustrated in Figure 1.4 (g,h) where the maxima cor-

respond to blue spheres and the saddles (in this case monkey saddles) to the yellow

spheres.

This definition bears problems in that the line graph may have a homotopy different to

that of the domain itself. A deformation of the Gyroid can be imagined (although we

believe it to be a non-minimal one, see Chapter 3) where these geometrically centered

lines connect maxima to maxima in straight lines forming a triangle around the central

point (of course the saddles must move onto the edges of this triangle). Then the graph

forms a loop that has no counterpart in the actual labyrinthine domain.

The construction of geometrically centered line graphs and a discussion of its sub-

tleties and ambivalences are given in Chapter 3. The line graphs of IPMS are discussed

in Chapters 5 and 6. For the experimental data, an automated computation of the so

defined line graph turned out to be impossible due to noisy data, yet we kept to the

spirit of the definition in manually determining a model of the line graph.

Unusual features of the line graph

These line graphs show a number of noteworthy features even for the fairly generic

labyrinthine domains based on IPMS. The Gyroid example already demonstrates the

falsehood of the notion occasionally adopted in the literature (e.g. [198]) that nodes of

the line graph correspond to widest points of the labyrinth. In the case of the Gyroid

the maximal width of the channel system is indeed reached at the center of the graph

edges. This feature is also observed in one of the two channel domains of the I-WP

space partition, see Section 5.5.

Furthermore, those IPMS families that are in general non-cubic but contain one or

more cubic members provide good models for transitions of generic line graphs in-

volving changes to the coordination number. Analysis of their line graphs shows

that the transition between for example the 3-coordinated graph of the Gyroid sur-

face and the 4-coordinated graph of the tD surface family (via the tG surfaces) is not
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one that merges two symmetric trigonal three-nodes to form a symmetric tetrahe-

dral four-node. The transition is rather the split of a symmetric three-node into two

edge midpoints, leading to the formation of a strongly deformed 4-node (with two

pairs of tangential incident edges) followed by the relaxation of the shape to that of a

symmetric 4-node. This illustrates that the ostensibly abrupt topological transition is

overlayed by a geometric shape deformation (see Figure 6.5, d+e, on page 146)

Variations of the MS distance as a measure for chain stretching homogeneity in

mesophase formation

The MS distance function allows for a simple geometric definition of packing ho-

mogeneity. The simplistic picture is that of Type 1 self-assembly of surfactant/lipid

molecules in binary mixtures with water, see Figure 5.4 on page 108. The picture is

that of a film of water separating two intertwined channels containing the hydropho-

bic chains (but no additional oil). The interface between oil and water is assumed

as a parallel surface to the IPMS that represents the middle of the water film. The

molecules are assumed to be pointing normally away from the surface towards the

MS of the hydrophobic microdomain.

The tail ends then have to lie on the MS of the hydrophobic phase in order to be

space-filling which necessarily involves stretching or squashing as hyperbolic sur-

faces with constant distance function do not exist (for the same reason as constant

Gaussian curvature surface do not exist). Approximating the penalty for stretching of

the hydrophobic hydrocarbon chains from their preferred length as (d � l0)2 gives a

measure for the packing homogeneity, namely the mean square deviation of d from l0.

It is important to note though that these measures are (in the same way as curvature

measures) not scale-invariant. They depend on the length scale of the system, that

may be well approximated by the strongest contribution to the free-energy or may

need to be determined by a combination of all contributions. We do not dwell on the

details of an actual system, but stick to an analysis of the geometric properties and

present them in a variety of normalisations. This approach does justice to the large

number of different systems in which these generic structures are observed.

An analysis of this kind is presented in Chapter 5.4 for the cubic IPMS and in Chap-

ter 6.2 for non-cubic IPMS families. This analysis clearly demonstrates the packing

homogeneity of IPMS families to be greatly enhanced “in the vicinty” of the cubics

compared their family members with axes ratios distinctly different from 1.
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The MS as a clear identifier of channel topology and geometry

Finally, the MS is a useful tool for the visual inspection of labyrinth structures as it

combines the complete geometric and topological information of the labyrinth with

the advantage of a fairly sparse representation. In Chapter 7 we present an analysis of

electron-tomography data of a novel triblock copolymer phase of distinctly non-cubic

symmetry.

The novel copolymer phase found is intriguing in that it is distinctly non-cubic. Our

analysis shows it to be of the same symmetry as a phase recently found in another

triblock-copolymer system [12, 54], but the topology is completely different. We find

a system of two intertwined graphs of 4- and 3-coordinated nodes with Fddd symme-

try, whereas their claim (based on SAXS measurements and TEM images) is a single

network of Fddd symmetry.

The MS construction is useful in this context despite its sensitivity to noise in the

representation of the bounding surface (clearly, any small convex angle generates a

MS branch that extends all the way to the bounding surface; a sharp convex cusp can

only be reconstructed by a union of spheres with at least some of vanishing radii and

hence close to the surface). In this particular data set, we have benefitted from the

relatively small channel diameters of the imaged phase and of the fact that the MS is

not branched.

1.3 MS-like structures and line skeletons in physics

Physical analysis of labyrinth-forming structures based on skeletons of their channels

is ubiquitous. The typical representation is as that of a line graph, which is assumed

to correctly represent the topology of the labyrinth, yet also capture some of the ge-

ometry.

Network models for fluid flow and transport through random porous media are widely

used [13, 200]. Upon increasing pressure, the water-vapour interface advances along

the network edges (representing the thin capillaries, throats, between pores) overcom-

ing the Laplace pressure given by the point of narrowest cross-section along the edge.

Graph edges have geometric significance, in that they are associated with a diame-

ter of the throats. Some of the algorithms applied to network generation of random

porous material make implicit use of the MS concept, by associating pores with max-

ima of the distance function [198].

The notion that the bicontinuous mesophase structures adopted in self-assembled

lipid, surfactant or copolymer blends are described by their line graphs is widespread.
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More explicitly, Luzatti et al. have suggested the concept of chaotic zones as the regions

deep inside labyrinths where the flexible hydrophobic hydrocarbon chains (or the ori-

entation of the polar dipoles) are the least ordered [139, 142]. This construction is

clearly reminiscent of the MS construction and the reduced parallel surfaces described

above.

In a different approach, distances from the H = 0 interface to the line graph, and fluc-

tuations of it, have been suggested to quantify packing frustration [50]. In this thesis,

we analyse infinite periodic minimal surfaces using a very similar idea, yet with the

MS distance function rather than the distance to the line graph.

Figure 1.5: Icy-Pole

A bite through an icy-pole reveals another physical phenomenon

where interface evolution terminates on a structure reminiscent

of the MS. The sugar solution is rapidly frozen starting at the cold

metal mould, leading to the formation of linear ice crystals that

are oriented perpendicular to the mold surface, and extend into

the frozen block to a structure that is reminiscent of the MS (the

Y-shape in Figure 1.5).

This is somewhat reminiscent of the Avrami-Johnson-Mehl

model of grain nucleation and growth where growth occurs in

circles around nucleation sites at the expense of a liquid matrix.

In 2D, growth stops stops where two growing interfaces meet [175, 210]. If growth

starts from a more general interface, the interface where it stops is similar to the MS

construction.

It has been shown that analysis of (reduced) parallel surfaces of interfaces in terms of

their Minkowski integrals (foliated volume, area, integrated mean curvature and Eu-

ler index) is a robust and physically relevant tool for spatial structure characterisation

[152]. Examples include descriptions of pore space morphologies in porous media [7]

and reaction-diffusion systems [151]. At least implicitly, this analysis assumes that the

parallel surfaces do not pass through each other but terminate on the MS. Mecke notes

that these measures are robust with respect to small variations of the domain shape

[152]. This property does not hold true for the MS construction, which is sensitive to

small changes of the domain shape if these changes represent strong changes to the

normal field (note that curvature analyses are affected by it in the same way as the

MS).

A structural model for the construction of achiral smectic blue phases, that fill space by

layers parallel to infinite periodic minimal surfaces, has been suggested and analysed

for the Primitive and I-WP surfaces [44, 43]. Line defects of these liquid crystals are

located on the boundary of the MS, representing lines of highest intrinsic curvature.
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Generalised Voronoi-constructions of the complement of sets of convex particles have

been suggested as models in which fluid-flow and diffusion through porous materials

can be simulated [153, 138]. Their navigational map consists of the branch-lines of the

MS, which in that case gives a continuous network centered in the domain and can be

computed exactly for simple particle shapes.

Organisation of this thesis

In the second chapter, the concept of a Medial Surface is introduced. Its main prop-

erties are explained and the literature reviewed. An algorithm to compute the medial

surface is discussed that is based on triangulated representations of the bounding sur-

face. These are most appropriate for the mathematical models of infinite minimal

surfaces that are discussed here. The algorithm computes a Voronoi diagram of the

sample points of the surface, that is then reduced to the medial surface.

A novel adaptation of the algorithm is presented that is particularly suited for com-

putation of medial surfaces of exact surface data, such as from mathematical parame-

terisations.

The third chapter discusses the reduction of the medial surface to a line graph. The

definition of line-graph that we use emphasises the geometric centeredness of the line

graph within the labyrinth, at the expense of topological equivalence to the labyrinthine

domain. The difficulties with line graph definitions in general are explained in detail.

The fourth chapter describes the parametrisation of infinite periodic minimal surface

using the Weierstrass equations. The literature on these space partitions is reviewed

and parametrisations for all IPMS analysed in the subsequent chapters are given. We

present a new algorithm to obtain triangulations of IPMS asymmetric unit-patches

with even triangle edge lengths, as this is a requirement for the MS computations.

The fifth and sixth chapters present analyses of the MS and properties derived from

the MS for domains bounded by infinite periodic minimal surfaces, first of the cubic

Primitive, Diamond, Gyroid and I-WP surfaces and then of the surface families tD,

tG, rPD and rG of non-cubic symmetry. The notion of packing homogeneity is de-

scribed and analysed for these space partitions. The properties of the channel graphs,

in particular their transitions during the evolution of the surface families, is analysed.

The seventh chapter describes an analysis of an experimental electron-tomography

data set of a novel, non-cubic ABC triblock copolymer phase. The domain shape is

described in terms of its symmetry and shape – both derived from the MS representa-

tion.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1.4: Illustration for the MS construction as the end point of the grassfire transform and

the idea behind a geometrically centered graph.
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Chapter 2

Medial Surfaces

This chapter provides a definition of the medial surface, gives an overview of some

of the main properties of this structure, and describes algorithms to compute it. A

bibliography of literature on both theoretical and computational aspects of the MS is

given.

Algorithms are presented that compute approximations to medial surfaces of 3D do-

mains that take a triangulation of the bounding surface of the domain as input data.

They then approximate the MS as a subset of the Voronoi diagram of the sample points

of the bounding surface. In particular, a novel adaption that provides better MS ap-

proximations if the bounding surfaces stems from mathematical parametrisations is

described.

A word on the terminology is in order. The naming of the “Medial Surface” is not

uniform in the literature, and we here adopt the name “Medial Surface” even though

it is much less common than “Medial Axis”. However, we find the former term more

descriptive for the 3D MS – and it distinguishes the MS nicely from line graph repre-

sentations that, in the physics literature, have sometimes been called “Medial Axes”.

Occasionally, the MS is also called “skeleton”.

The bibliography includes the most important contributions to research into the MS

for the 3D case. The body of literature on the 2D case, both conceptual and algorith-

mic, is so vast that even a review is beyond the scope of this chapter. Therefore, apart

from a few exceptions, we refrain from providing references for the equivalent 2D

results.

2.1 Definition and basic properties of the MS

We define the MS for a domain C in Euclidean 3D space. A domain C is an open,

connected subset of E 3 whose boundary, or skin, is an oriented piece-wise smooth
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Figure 2.1: Sketch of an elephant and its medial axis in the plane. Some features of the MS

are illustrated in this figure: Points on the MS, and their counterparts on the polygon can be

classified according to the number of contact points of the corresponding maximal spheres.

Normal points have contact order n = 2; end points of the medial axis correspond to oscu-

lating maximal circles. For a point p on the skin the corresponding medial axis point is in

normal direction from p: ms(p) = p + d(p)N(p). The medial axis normal M at q = ms(p)
and the surface normal N(p) of corresponding points subtend an angle 
 2 [0; �=2℄ with each

other. Two points p1 and p2 corresponding to a normal MS point q are MS mirror images of

each other in the sense that the angles \N(p1);M(p1) and \N(p2);M(p2) are identical and,

by definition, d(p1) = d(p2). Small features of the skin, such as the pimple on the elephant’s

back, can induce dominant features on the medial axis, if they drastically change the normal

field N(p).
manifold, or a set of piece-wise smooth manifolds in E3 .

For example, a domain might be one of the two subvolumes bounded by an infinite

periodic minimal surface, the void or the solid phase of a porous medium, a three-

dimensional solid, or the complement of a set of disjoint solid objects.

As said above, the boundary surface is always orientable, and has a piecewise smooth

normal field N defined everywhere on S. The normal field along edges and vertices is

defined by replacing edges by a cylindrical surface element and vertices by a spherical

cap, both of vanishingly small radius. We assume the surface normals are of unit

length and oriented to point into the domain C .

The MS is, in a loose sense, the geometrically centered skeleton or backbone of the

domainC . The medial surface MS of the domainC is the locus of centers of all maximal

spheres in C . A maximal sphere is a sphere contained in C which is not contained in any

other sphere contained in C .

These spheres are necessarily tangential to S. It is immediately obvious that the me-

dial surface is the set of points insideC with two or more nearest points on S, together
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-� a?6b
Figure 2.2: Examples of medial surfaces in 3D. (Left) The MS of a rectangular box (Right) A

cylinder with elliptic cross-section together with its MS.

with limit points of this set. These limit points are points where these two nearest sur-

face points converge to a single point (see for example the elephant’s front foot in

Fig. 2.1).

The medial surface of a domain generally consists of surface patches meeting along

one-dimensional curves. In particular cases, the patches may extend to infinity, or

degenerate to curves or even points. If S has a convex edge (or vertex), i.e. a line

(point) where the normal field is discontinuous and the corner is pointing out of the

domain, then there is a MS patch extending up into the corners of the surface, see the

rectangular box in Fig. 2.2 (left).

Some examples clarify the features of the MS construction. The medial surface of

an infinite slab of thickness d (bounded by two parallel planes) is a parallel plane

at distance d=2 between the two original planes. The medial surface of a sphere is

its center point, and the medial surface of a cylinder with circular cross section is

its rotational symmetry axis. The MS of a straight cylinder along the z-axis whose

cross section is the ellipse given by (x=a)2 + (y=b)2 = 1 with a > b is a flat ribbonf(x; 0; z)j �1 � z � 1; jxj � a� b2=ag in the y = 0 plane, see Fig. 2.2 (right).

Any point p 2 S on the boundary S of the domain C has exactly one corresponding

point q := ms(p) on the MS of C . The converse is, evidently, not true. The point p is

located at the shortest distance from q compared with all other points on S. Therefore,

the map ms from a point on S to the corresponding MS point can be written asms : S ! E 3 ; p 7! ms(p) := p+ d(p)N(p) (2.1)

where N is the normal field of S and d : S ! R+ is called the distance or radius
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function.

The MS accurately represents the topology of the original domain, in the sense that the

MS is a strong deformation retract (see [201] for a definition) of the original domainC in 2D [29] and in 3D [219, 195]1. This means that, although the dimension of C is

in general different to that of its MS, they have the same tunnels, holes and connected

components.

An alternative description of the MS construction, that makes the topological equiva-

lence between the skin and the MS very obvious, has given the name grassfire transform

to the MS. In Blum’s own words [19]: “Imagine an object whose border is set on fire.

The subsequent internal quency (sic) points of the fire represent the symmetric axis,

the time of quench for unit velocity propagation being the radius function.”

Furthermore, the medial surface together with the distance function d allows for the

reconstruction of the domainC as the union of maximal spheres of radius d0 (ms(p)) =d(p) centered at the MS points ms(p) [219]. Explicit formulae for the reconstruction

can be found in [78].

These two properties lend a robustness to the MS concept that all other skeletonisation

techniques do not possess. The MS transform, i.e. the MS together with the radii

of the maximal spheres, is topologically and geometrically a complete and accurate

description of the structure.

A property that is for most, but not all, purposes a drawback is the sensitivity of

the MS construction to small variations in the normal field N of the boundary S =�C . Perturbations under which the MS changes continuously must involve only small

changes in the normal field of S. Addition of a small bump in S can create a big change

in the MS, see Fig. 2.1.

Most importantly, the medial surfaces of a domain bounded by a smooth manifold S,

or bounded by a faceted surface approximating S differ strongly from each other, re-

gardless how good the surface approximation is: the MS of the faceted surface domain

has MS patches extending into all facet edges and corners.

This sensitivity of the MS construction to surface normal variations is inherent to its

definition and not due to the algorithmic details of its computation.

A second consequence is that the MS is sensitive to roughness of the bounding surfaceS. This causes difficulties for the determination of the MS of noisy data sets. The ex-

traction of the MS of a smooth object that is given by noisy surface data of its bounding

surface is a difficult issue, discussed later in this chapter.

1The first reference requiresS to be smooth, rather than piecewise smooth. The second reference does
not seem to impose this restriction.
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The distance function d : S ! R+ is formally similar to the radius of curvaturer
 : S ! R in the sense that both measure distances in normal direction from points

on S. In general, at any given point p 2 S there exist two distinct radii of curvaturer
;1 and r
;2 corresponding to the two principal directions in p. Only positive curva-

ture (i.e. bending of the surface towards the normal N ) can lead to curvature induced

points of the MS in positive normal direction. We therefore define r
 as the minimum

of the positive radii of curvature and infinity. Indeed, the maximal sphere Km cen-

tered at ms(p) with radius d(p) and the sphere Kr centered at the center of curvaturep + r
(p)N(p) with radius r
(p) are both tangential to S in p. By definition, Km is

contained in C (global). In contrast, Kr need not be contained in C but is osculating2.

It is straightforward to see that the distance function is always smaller than the radius

of curvature3 8p 2 S : d(p) � r
(p): (2.2)

For all points on free boundaries of MS patches (i.e. the ones that are not intersections

of more than two MS sheets) this inequality holds as an equality. However, in addition

there can be isolated points that are not on free boundaries, or continuous subsets ofS that are cylindrical segments or spherical caps for which d(p) = r
(p). Furthermore,

there is the pathological case of convex corners and edges on S that have r
(p) =d(p) = 0.

2.2 Some results and literature about the MS

This section provides a review of some theoretical results about concepts concerning

the MS, together with literature references. In particular for the 2D case, the literature

is abundant, and we do not claim to give a comprehensive account.

The geometric structure of the MS in 3D is mostly understood: Points q on the MS are

2The word osculating, usually used in planar curve theory, is here applied in the following sense: ifr
 is infinite no osculating sphere exists. Otherwise, the principal direction through p that corresponds
to r
 is denoted by T
. Then, restricted to the plane Pn through p with directional vectors N(p) and T
(p)
(normal section) the circle Kr [ Pn is an osculating circle to the planar curve given by S [ Pn.

3To see this assume it exists a sphere K whose radius exceeds r
, which grazes S in p and lies in
positive normal direction from p. The sphere K contains Kr . But Kr and S have identical curvature in a
neighbourhood of p along at least one direction. Therefore, a finite part of S is contained in K. Thus, K
cannot be a maximal sphere. This can be phrased more precisely: A unit speed space curve � coincident
with the intersection of S with the plane containing the normal N(p) and the principal direction T
(p)
has curvature 1=r
 at the point p. Also the surface normal N(p) is identical to the curve normal, see
e.g. corollary 16.8 in [83]. A finite part of this curve is contained in the larger sphere K with r > r

because � curves more strongly towards N(p) than does K, leading to the above conclusion.
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classified according to their order n (i.e. the number of disjoint subsets of the set of

points p 2 S with ms(p) = q) [18]. In particular, the MS consists in patches of n = 2
points, bounded by two types of lines: n > 2 curves where three or more sheets meet,

and the open n = 1 boundaries of MS patches that in fact correspond to centers of

curvatures and are hence identical to the cusp lines of the focal surface, as shown by

Giblin and Kimia [78]. In 2D, the MS is a collection of n = 2 patches, n = 1 points

corresponding to curvature extrema and n � 3 lines where where n = 2 patches meet

[19, 29], see Fig. 2.1.

In addition, one distinguishes between point contact [156, 19] (or regular tangency

[78]), where the touching subset is a single point, and finite contact where it is finite

and therefore a spherical cap or a circular arc, see Fig. 2.1.

Blum and Nagel [19] and Nackman [156] have defined differential geometric proper-

ties of the MS, in 2D and 3D respectively. They introduce the notion of radius curva-

ture, that is the distance function takes the role of the radius of curvature in the usual

definition of the curvature tensor, and derive relations between the radius curvature

and the standard curvature of the bounding surface (Nackman restricts himself to then = 2 sheets). Both are concerned with a segmentation of objects for the purpose of

shape description.

Wolter [219] provides proofs of a number of fundamental properties of the MS in n
dimensions – both of topological and geometric nature. His article is phrased in the

mathematical language of cut loci, from the French ligne de partage, which, for a closed

set A in Euclidean space E , is the closure of the set containing all points p which have

a least two shortest paths to A. He provides rigorous proof for the equivalence of the

homotopy type of a domain and its surface by explicit construction of the deforma-

tion retract: points inside C move, by virtue of a homotopy, onto the MS along the

corresponding normal as a parameter t varies from 0 to 1. His article also includes a

formal proof of the statement that the domain can be reconstructed from the union of

maximal spheres centered at the medial surface.

In an equally fundamental paper, Choi et al [29] present many results for the 2D case:

in particular, they give the same result for the homotopy relation between C and its

MS. They also give requirements on the smoothness of the skin for the MS to be well-

behaved. In particular, the skin must be piece-wise real analytic to avoid infinite num-

bers of bifurcations of the medial axis; C1 is not a sufficient condition.4 For example,

a highly oscillating function such as e�1=t2 sin(1=t) is smooth but not real-analytic and

4The skin is C1 if, as a planar curve, it can be parametrised by coordinate functions xi(t) for which

the derivatives of any order x(j)i are continuous. It is real analytic if, in addition, the coordinate functions
agrees with their Taylor series in a neighbourhood at every point.
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produces infinitely many prongs on its medial axis. It medial axis is not a finite graph.

The grassfire interpretation of the MS construction makes clear links between the MS

and wave propagation: The MS construction can be interpreted as the search for weak

solutions of the Hamilton-Jacobi equation with constant propagation velocity 1. See

for example the first chapters in Sethian’s book [191].

Many papers address the issue of sensitivity of the MS to small changes of the skin S.

Choi et al. [31, 30] quantify this instability in terms of Hausdorff distance measures.

The Hausdorff distance is defined for two compact and non-empty sets D1 and D2
in En . For any point in D1 the distance to the nearest point in D2 is determined,

and vice versa. The Hausdorff distance between the two sets is the maximum of these

distances over all points ofD1 andD2. Small difference in Hausdorff distance between

two domains does not guarantee small differences between the respective MS. In [31]

they introduce the hyperbolic Hausdorff distance, i.e. the point to point distance for

MS points is the Euclidean distance reduced by the difference in radius between the

two maximal spheres. They show that the hyperbolic Hausdorff distance between

two medial surfaces is small if the conventional Hausdorff distance between the two

corresponding domains is small.

This instability is an obvious problem for pattern recognition and shape description

applications of the MS, as small irrelevant features generate dominant MS features.

Shaked and Bruckstein [192], among others, have suggested pruning schemes to elim-

inate non-essential parts of the MS. Giblin and Kimia [77] analyse the transition be-

tween medial surfaces under perturbation of the domain. In particular, they relate

these transitions to the classification of perestroikas (transitions) of the viscosity solu-

tions of the Hamilton-Jacobi equation by Bogaevsky [20].

The MS bears a noteworthy relation to the so-called Euclidean distance map. The

Euclidean distance map assigns a distance D to every point q in a domain C that is

the length of the shortest path from q to a point on S = �C . The gradient of the field D
is rD(q) = N(p) (where p is the nearest contact point) everywhere apart from pointsq on the MS where D has a singularity.

2.3 Voronoi diagrams and algorithms

Some basic concepts from discrete geometry are essential to further discussion of the

MS. This section gives a brief definition of the Voronoi diagram of a set of points, and

of its dual structure, the Delaunay triangulation. The computational complexity of the

Delaunay triangulation is described as it is the same as the complexity of the MS.



22 Medial Surfaces
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Figure 2.3: Delaunay triangulation and Voronoi diagram of a set of points V in the plane. The

dashed lines are edges of the Delaunay triangulation of the set of points, and thick black lines

are the boundaries of the Voronoi cells. The vertices of the Voronoi diagram are the centers of

the circumscribing spheres of the Delaunay triangles (Delaunay circles). The Delaunay circles

are devoid of other point of V . However, geometric degeneracies with four or more points on a

single Delaunay circle may occur, e.g. the left circle. These lead to Voronoi vertices with four

or more emanating edges.

Let V = f(x; y; z)g be a set of points in E3 . In keeping with the usual definition, we

define the Voronoi diagram to be the division of space with respect to V into n convex

cells CV (p) � E 3 such that for any point p 2 V any point q 2 CV (p) is closer to p than

to any other point p0 2 V where n is the number of vertices in V (see Fig. 2.3).

The first comprehensive account of the concept of Voronoi diagrams were given by

Dirichlet [46] and Voronoı̈ [214].5 It has since been the subject of intense study and

research in many branches of fundamental and applied sciences. A huge body of

literature on Voronoi diagrams exist; comprehensive accounts are e.g. refs. [10, 162,

71, 49, 220].

From the Voronoi diagram of the points in V , a dual structure called the Delaunay

triangulation (or tesselation) is obtained: any two points p1 and p2 in V are connected

by an edge if their Voronoi cells CV (p1) andCV (p2) have a common face in the Voronoi

diagram of V .

The Delaunay triangulation has several strong properties:

(1) It defines a tesselation of space6 into convex polyhedra with respect to the point

5However, as early as 1644 Descartes published diagrams that ressemble Voronoi diagrams. He ap-
plied them in his analysis of the distribution of matter in the universe. For more details, see the chapter
on the history of the Voronoi diagram in [162].

6More precisely, it tesselates the convex hull of the set of points V . The convex hull of a set of points
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set V . We can even assume that these polyhedra are simplices 7. These simplices are

called Delaunay simplices.

(2) The circumspheres of all Delaunay simplices are empty (of points of V ).

(3) By definition, the Voronoi diagram and the Delaunay triangulation are dual to each

other.

Algorithms for the Delaunay triangulation and the Voronoi diagram

Many algorithms that compute the Voronoi diagram first determine the Delaunay

triangulation and then use the duality between the two structures to compute the

Voronoi diagram. Algorithms to compute Delaunay triangulations are numerous (see

the bibliographies in the above mentioned surveys). One that is commonly used is

the randomised incremental flip algorithm, developed in [129, 107, 108, 172, 51] and

described e.g. in [154]:

This algorithm incrementally builds up a Delaunay triangulation, starting from the

trivial triangulation T of four of the vertices in V that is trivially a Delaunay triangu-

lation. Repeatedly, another point from the set V is added to T , such that T remains

a triangulation, though, in general not a Delaunay triangulation.8 Through a number

of flips (the 3D equivalent of flipping the diagonal in a convex planar four-gon) T is

then transformed into a Delaunay triangulation. This is repeated until all points in V
are added.

An inherent problem for Delaunay triangulation algorithms is robustness: In order to

check if a triangulation T is (locally) Delaunay a so-called insphere test (or predicate) is

invoked, to decide if a point p lies outside, on or inside the circumscribing sphere of a

simplex S1. This test is a crucial component of all Delaunay triangulation algorithms.

The insphere test is inherently numerically unstable if p is near the surface of the

sphere, see e.g. [197]. A number of schemes have been suggested to circumvent this

problem, among them the use of robust adaptive floating-point predicates [196], sym-

bolic pertubation schemes [154] and exact integer arithmetic schemes [32].

Incorrect incircle and orientation predicates may not only produce a triangulation that

is not a Delaunay triangulation, but can also generate a result that is not even combi-

natorically a triangulation (see [196, 197] for an illustrative example).V 2 Ed is the smallest (inclusionwise) convex subset of Ed containing V , see for example [82].
7A simplex is a polyhedra with four vertices, a topological tetrahedra. The assumption that the poly-

hedra are simplices is violated if any of the Delaunay spheres has more than four of the points in V on
its surface. However, even in this case the non-simplicial polyhedra can be split up into simplices, for
details see e.g. [162].

8Note that this step requires a point-location scheme
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Complexity of Delaunay triangulation, Voronoi diagram and Medial Surface

The computational complexity of the MS algorithms discussed in this thesis is given

by the complexity of the Voronoi diagram. Once the Voronoi diagram is computed,

all other steps are local operations and computationally inexpensive. We therefore

now discuss the complexity of the Voronoi diagram and Delaunay triangulation, in

particular the case where the point set is a set of sample points of a manifold in E 3 .

The worst-case time complexity of the Delaunay triangulation in 3D is O(n2) wheren is the number of points. The randomised incremental flip algorithm is optimal for

the worst case. However, typical run-times are much faster, and the worst case is gen-

erally only reached for specific examples, for example for equidistant points on two

skew lines. The expected time is often proportional to the final number of simplices

in the Delaunay triangulation.

For point sets V that are sample points on a surface recent articles suggest improved

worst-case bounds: In particular, imposing a mild sampling condition for a set of

sample points on a generic9 surface in E 3 , it can be shown that the complexity of the

Delaunay triangulation is O(n log n) [8]. If the points are randomly and uniformly

distributed on a convex polytope the complexity is even O(n) [80]. For a cylinder,

though, it has been shown that even a “nice point set” may have O(npn) complexity

[55]. The bottle neck to further improvement beyond the logarithmic behaviour is the

point location scheme; a biased randomised insertion order “which removes enough

randomness to significantly improve performance, but leaves enough randomness so

that the algorithm remains theoretically optimal” has been suggested [4].

Robust and efficient implementations of randomised incremental algorithms for De-

launay triangulations for R3 are available, including Clarkson’s hull10, the CGAL De-

launay hierarchy11, Shewchuk’s pyramid12 and the �-shape software of Edelsbrunner

et al.13

9A surface is generic if “roughly, the ridges, i.e. the points of the surface where one of the principal
curvatures is locally maximal, is a finite set of curves whose total length is bounded. In particular,
spheres and cylinders are excluded.” [8]

10http://cm.bell-labs.com/netlib/voronoi/hull.html
11http://www.cgal.org
12as yet unpublished
13ftp://ftp.ncsa.uiuc.edu/Visualization/Alpha-shape/
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2.4 Voronoi based medial surface algorithms

The representation of a domain most suitable for the problems addressed in this thesis

is a triangulation of the boundary surface. A triangulation14 of S consists in a set of

points V = f(x; y; z) 2 Sg and a set T of oriented triangles whose vertices are the

points in V . The coordinates x, y and z are floating-point numbers.

This representation is natural for surface data derived from mathematical parametri-

sations (such as the Weierstrass form of chapter 4), or for data collected from e.g. laser

range scanners.

This section describes the general idea common to all those MS algorithms for trian-

gulated representations of a domain. Such algorithms are based on analyses of the 3D

Voronoi diagram of the vertices of the triangulation.

The loose idea behind all Voronoi-based MS algorithms is that the Voronoi cells of a

dense set of sample points on a surface are long, thin and roughly in direction of the

surface normal, and reaching as far into the void as possible. Therefore, some parts of

each Voronoi cell – either vertices, edges, faces or points on them – have to lie on the

MS. See Fig. 2.4 for an illustration.

Early suggestions to use subsets of the Voronoi diagram were made by Attali and

Montanvert [9] and Sheehy et al. [193]. Even earlier, but incorrectly, Goldack et al. [79]

argued that the (complete) set of Voronoi vertices converges to the MS with increas-

ing sampling density. Amenta et al. [2, 3] and Boissonnat and Cazal [21] eventually

established that a certain subset of the Voronoi vertices, the maximally distant poles,

converges to the MS in the dense sampling limit. Dey and Zhao [42] discern the faces,

rather than the vertices, of the Voronoi diagram that converge to the MS.

The situation in 3D is fundamentally different from the planar case. In the planar case,

all Delaunay circles converge to maximal circles with increasing sampling density on

the domain boundary S, see Figs. 2.4 and 2.5. Hence, the complete set of Voronoi

vertices (the centers of the Delaunay circles) converges to the MS. In 2D and in the

limit of dense sampling, a Delaunay sphere is not an approximation of a maximal

sphere only if S is not well sampled.

In 3D, Voronoi vertices may lie arbitrarily close to S – and thus far from MS – even in

the limit of dense sampling. The reason is simple: The radius of a circle defined by

three neighbouring points on a well-sampled 2D polygon is approximately the radius

of curvature. i.e. the radius of the osculating circle. The radius of the sphere defined

14Note the differences between the use of the word in this context and in the context of Delaunay
triangulations: A Delaunay triangulation tesselates E3 into tetrahedra (the 3D equivalent of triangles).
Here a triangulation tesselates a two dimensional surface by triangles.
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Figure 2.4: Voronoi diagram of a set of points in 2D that represent a (relatively good) sample

of a curve S in the plane. The Voronoi cells are mostly thin and long and roughly in normal

direction of S. Upon increase of the sampling density the cells narrow further. Delaunay

circles are good approximations of maximal disks provided the sampling of S is sufficient.

Delaunay sphere A� BAI
Figure 2.5: Failure of the Delaunay spheres to converge to maximal spheres in 3D: The centers

of some Delaunay spheres (A) of the Delaunay triangulation of the vertices of this cylinder

triangulation lie close to the cylinder surface itself. Even upon refinement of the triangulation

their centers remain at the same distance from the cylinder surface. These spheres sit “in

between four neighbouring vertices of the triangulation”. However, for each surface vertex

some of the Voronoi vertices (small white spheres in the right image) of its Voronoi cell – which

are the centers of Delaunay spheres – are far from the surface and, in the dense sampling limit,

good approximations to the MS point (B).
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by four neighbouring15 points on a well-sampled surface in 3D is not bounded from

below by curvature properties of the surface. The sphere is not necessarily osculat-

ing16 to the surface, its center can be closer to the surface than even the smaller one

of the two radii of curvature. In fact, the sphere center can lie on the surface – for

example when the four vertices form a nearly flat square within the triangulation.

�N(p)p qp
Figure 2.6: The pole vertex

However, Amenta et al. [2, 3] and Boissonnat and Cazal

[21] established that, even in 3D, a subset of the Voronoi

vertices lies near the MS. For every surface point p 2 S
they define the pole as the Voronoi vertex qp of the Voronoi

cell CV (p) in normal hemisphere17 from p that maximises

the distance to p. They show that this subset converges to

the MS if the sample is a good sample:

Amenta et al. introduce the notion of an r-sample. The

vertices V of a triangulation of S are an r-sample if the dis-

tance from any point p 2 S to its closest sample in V is at

most a constant fraction r times the MS distance function

value d(p). In this context they call d(p) the local feature

size (LFS).

With this notation they prove that the set of poles con-

verges to the MS with decreasing value of r: They show that the polar balls, i.e. the

Delaunay spheres of the poles, have shallow intersection with S. They also show that

the direction of the vector from a vertex p 2 S to its pole approaches N(p) in the limit

of small r. In the subsequent sections we will refer to Amenta’s analysis to guarantee

the convergence of our construction of the MS.

2.5 MS of labyrinthine structures

This thesis is particularly concerned with the generation of skeletons of labyrinthine

structures. These are, by definition, not closed in E3 , but have open ends. This situa-

tion is in contrast to those commonly discussed in the computational geometry com-

15For two points on S to be neighbouring it is neither sufficient nor necessary that they are connected
by an edge of the triangulation – as the topology of the triangulation may be uneven. Loosely, two
points are neighbouring if they are connected by a Delaunay edge that is more or less perpendicular to
the surface normal. See the definition of umbrella in [42] for details.

16For a point p on a surface in 3D, an osculating sphere is a sphere centered in positive (negative)
normal direction at a distance equal to the smaller of the positive (negative) radii of curvature of the
surface at p.

17I.e. h(qp � p); N(p)i > 0 where h:; :i denotes scalar product in E3 .
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Figure 2.7: (Left) MS computation of a finite open portion of a labyrinthine structure. The

skin S of a domain within a rectangular box is given (black interface between light and dark

gray). The MS is computed as the complete set of Voronoi vertices. White maximal circles

do overlap with the bounding box, and are hence subject to how S is continued beyond the

bounding box, whereas black ones do not. Note that points of S on the convex hull of S
have no corresponding Voronoi vertices. (Right) A periodic labyrinth: The domain, gray, is

the complement of a periodic arrangement of ellipses. Its translational unit is marked by the

slightly lighter color, and its asymmetric unit patch Sa by the curved arrow. For computation

of the MS of Sa an array of 3d translational unit cells is sufficient, albeit often too large.19

munity where the typical domain is a solid, and hence the boundary surface a closed

manifold in E3 .

In the case of a labyrinth structure D (with skin S) with open channel ends, a mean-

ingful definition of the MS may be restricted to an interior subset D0 of D. The reason

is that the MS points of points on S near the open channel ends may be influenced by

the boundary of S.

The typical situation is the following, illustrated in Fig. 2.7 (left): A domain D rep-

resenting a labyrinth structure is assumed to be infinite throughout space, but only a

subset S0 of it is known. S0 is contained in a rectangular bounding box B. We further

assume that S0 = S [B, i.e. it is the maximal subset of S contained in B.

Any MS computation on S0 yields a MS with parts that are influenced by the bound-

ary. These parts have the property that the corresponding maximal spheres (or disks)

overlap with the bounding box B. If there is no overlap the continuation of S outside

of B cannot make a difference to the maximal sphere. Those parts of the MS are hence

robust.20

In the special case of periodic labyrinth structures one has – by virtue of the possibility

19The MS is hand-drawn in this illustration, not incorporating the slight bend of its edges. However,
deviations from linearity are approximately of the size of the line thickness.

20This criterion is obviously the same as for the Delaunay triangulation of a subset S0 of a larger point
set S. It has been previously described in [41].
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of translation – a choice of the size of the bounding box. The question then is what the

smallest subset S0 to yield the correct MS of the asymmetric unit patch21 Sasy of S is.

Fig. 2.7 (right) illustrates the situation.

The maximal size of S0 to yield a correct MS of Sasy has been shown to be an array of3 � 3 � 3 (in 3D, or 3 � 3 in 2D) translational unit cells. This follows from a result in

[149] about the corresponding situation for the Voronoi diagram.

However, it is often possible to restrict oneself to a smaller subset. In particular, if

the maximal distance function value is known a sufficient subset S0 are those sam-

ple points of S that are contained within the spheres of 2 d(p) around all points p ofSasy. Application of this criterion reduces the size of the sample point set – crucial

for densely sampled, large data sets with computationally expensive Voronoi tessela-

tions.

2.6 Voronoi-based MS for exact surface data

This section describes our algorithm to compute the MS of an exact triangulated do-

main in 3D by analysis of the Voronoi diagram of the sample points V of the triangula-

tion of S. It works well for exact surface data, i.e. that the points V of the triangulation

are points of S without any noise and that exact surface normals can be computed for

these points. It is based on previous ideas, in particular Amenta’s work. The contribu-

tion of this thesis is an adaption that improves the algorithm for the case of exact rep-

resentations of the surface, such as mathematical parametrisations. It is summarised

by the following statement:

Every point p of the triangulation of S has a corresponding MS point q that lies

in normal direction from p. We demand that q is closer to p than to any other

surface vertex, but also as distant from p as possible. Therefore, q must lie on the

boundary of the Voronoi cell of p. We deduce that q has to be at the intersection

of the straight line in normal direction through p with the Voronoi cell of p.

The process is illustrated in Fig. 2.8 (2D) and Fig. 2.9 (3D).

Let S0 be a surface sampled by the set of points V 0 = fx; y; z) 2 S0g such that the

subset S whose MS shall be computed is embedded in S0. S is sampled by a set of

points V = f(x; y; z) 2 Sg together with a set T of oriented triangles whose vertices

are the points in V . Normal vectors N(p) for all points p 2 V are known, and are

assumed to point into the domain C .

21or the translational unit cell if there are not any additional symmetries
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Figure 2.8: (Left) Illustration of our MS algorithm in 2D: The domain C (dark gray) is the

complement of an assembly of overlapping disks (light gray). The boundary S = �C of the

domain is discretised into vertices V (black points) connected by edges. The interface normal

vectors are pointing into C. The first step is the computation of the Voronoi diagram of the

set of vertices V (dashed lines). For every point p 2 V there is a corresponding point q on the

medial surface which is the intersection of the straight line in normal direction through p with

the Voronoi cell of p (the black points on the white line), unless p is at a cusp of S. If p is at a

concave cusp of S (as is the vertex p0), then ms(p) = p. The white line is the exact medial axis,

for which an analytic form is known in the case of disk assemblies [138, 153].

The sampling of S0 coincides with the sample points of S for all points on S. S0 is

assumed to be so large that the boundaries of S0 have no influence on the MS of S.

For the periodic surface discussed in the next chapter, S is typically an asymmetric

unit patch or a translational unit cell and S0 a 3� 3� 3 array of translational unit cells

surrounding S.

The points p and normals N(p) are assumed to be accurate, e.g. from a mathemati-

cal parametrisation of S where any inaccuracy stems from rounding errors only. We

assume that the sampling density is sufficiently high.

Fig. 2.10 (top) gives a pseudocode description of the algorithm.

In fact, computation of the actual Voronoi cells can be avoided. For any point p 2 S,

one may intersect the planes that are perpendicular bisector of all Delaunay edges

emanating from p with the ray through p in surface normal direction N(p). An inter-

section that is closest to p exists (because of the convex properties of the Voronoi cells)

and is exactly the same point obtained by intersection of the normal with the Voronoi

cell CV (p). The Voronoi facets of CV (p) are, of course, subsets of the bisector planes.

Fig. 2.10 (bottom) gives a pseudocode description of this algorithm.
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Figure 2.9: The 3D case: A small patch P of the boundary S = �C of a domain C is shown (the

lower surface patch) together with its triangulation. Also shown is the Voronoi cell of a vertexp (marked by a small white point on the surface inside the cell) of the triangulation which is an

elongated, convex polyhedron oriented along the surface normal direction (bounded by thick

black lines, joined by opaque faces). The white line is the straight line in normal direction

through p, which intersects the Voronoi cell of p at ms(p) (white point). The surface patch in

the top part of the image is the MS patch corresponding to P and its triangulation is inherited

from P . Note that for the computation of the Voronoi diagram as a global property of C, a

much larger fraction of S is needed than the patch shown.

The MS points produced by this algorithm are approximations that in the limit of

perfect sampling converge to the true MS ofC . This is guaranteed by Amenta’s proofs,

as our algorithm yields the same points as her algorithm in the dense sampling limit

(r ! 0 in her notation of r-samples).

Our algorithm yields a better triangulation of the MS (inherited from the triangulation

of S) than that of ms(p) approximated by the pole vertex, since quasi-degeneracy of

pole distances can lead to overlapping MS triangles.22 Consider, for an example, the

hexagonal Voronoi cells of a set of parallel planes triangulated by congruent equilat-

eral triangles (Fig. 2.11).

Our triangulation avoids this problem. However, on the free boundaries of the MS

– where MS points correspond to centers of curvature – our approach may generate

22We note that Amenta et al. are not suggesting to use this trivial triangulation on the set of poles.
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Algorithm MS Points of Exact Surfaces (Voronoi cells)

Initialise large set of surface points V 0 2 S0
Initialise small subset of surface points V
Initialise normals of points in V
Compute Delaunay triangulation of V 0
Forall points p 2 V do

Compute Voronoi cell CV (p)
NormalRay := ray from p in direction N(p)
MSPoint := intersection NormalRay with CV (p)

Infer triangulation of MS from triangulation of S
Algorithm MS Points of Exact Surfaces (Voronoi planes)

Initialise large set of surface points V 0 2 S0
Initialise small subset of surface points V
Initialise normals of points in V
Compute Delaunay triangulation of V 0
Forall points p 2 V do

MinDist = 1, MSPoint = ;
Forall Delaunay edges (p; p1) with p1 2 V 0 do

VoronoiPlane := perpendicular bisector plane of (p; p1)
NormalRay := ray from p in direction N(p)
q = Intersection of VoronoiPlane and NormalRay if exists
if Intersection exists and d(p; q) < MinDist do

MinDist = d(p; q)
MSPoint = q

Infer triangulation of MS from triangulation of S
Figure 2.10: Pseudocode for MS calculation of exact surface representations that avoids the

actual computation of Voronoi cells

triangles that, nearly or completely, degenerate to a line. Errors in these areas are more

likely, as the direction of the MS normals changes by �.

It is important to note that the MS as computed here is in fact a double cover of the

MS. Every point on the MS corresponds strictly to one sample point on the surface.

Turning this double cover into a single cover of the MS is not easy to do, but it also is

not what this algorithm aims to do.

In summary, this section has described an MS algorithm that allows for accurate MS

computations of surfaces for which mathematical parametrisations are available. In

that case, without noise in position or normals of the surface points, this algorithm

yields superior MS approximations to previously presented algorithms. It yields a

one-to-one correspondence of points on the skin S and points on the MS, and the
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Figure 2.11: A problem when inferring the triangulation from the original surface to the set of

poles: (Left) the Voronoi cells of the vertices of two parallel planes (triangulated by congruent

equilateral triangles) are hexagonal cylinders. The distance from a surface vertex to all of

the six Voronoi vertices – in each normal direction – is the same, i.e. the choice of the pole is

arbitrary. (right) two non-overlapping triangles of the original surface (top) can induce two

overlapping triangles on the medial surface (bottom) due to a bad mapping from the surface

vertices to the poles. This scenario is not a pure artifact of the high degeneracy in this case.

The algorithm presented here largely avoids this problem.

triangulation of S also provides a well-behaved triangulation of the MS. All results on

issues relating to IPMS in this thesis are obtained with this algorithm.

2.6.1 Analysis of the numerical robustness

We conclude this section with a discussion of the numerical robustness of our algo-

rithm. Note that this is a different issue from the geometric convergence problem dealt

with by Amenta et al. and described earlier.

Here, we estimate for the two-dimensional situation: (1) the precision of the center

of curvature approximation by intersecting local Voronoi cells with straight lines in

normal direction, and (2) the influence of imprecision of the normal vector in this

case. We then argue that the MS construction is most fragile in the situation where MS

vertices correspond to centers of curvature. Therefore, the error analysis for the center

of curvature approximation gives an upper bound on the error of the MS construction.

Finally, an argument is presented mapping the 3D case onto 2D, thus allowing an

estimate of the robustness of the MS algorithm.

We first establish the precision of the approximation of the center of curvature by

intersections of local Voronoi cells with straight lines in normal direction. Consider a

cell C � E 2 whose boundary is given by a unit-speed curve � : [�a; b℄ ! E 2 , together

with its normal field N (a; b > 0). The real valued function � : [�a; b℄ ! R measures
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the curvature of �. Also given is a discretisationf�(ti) j � a= t�k < : : : t�1 < 0= t0 < t1 < � � � < tn�k=bg
of the boundary �, see Fig. 2.12.

The local Voronoi cell V (0) of the three vertices �(t�1), �(0) and �(t1) is bounded by

the two perpendicular bisectorsbi(s) = �(0) + �(ti)� �(0)2 + s J ��(ti)� �(0)2 �
(2.3)

where J denotes the counter-clockwise rotation in E 2 , i 2 f�1; 1g and s is a real pa-

rameter defining the position on the bisector.

We now determine how well the intersection of the straight line through �(0) in nor-

mal direction N(0) with the local Voronoi cell V (0) approximates the center of cur-

vature �(0) + 1=�(0)N(0) in the case of positive curvature at t0 = 0. To this end we

expand � in curvature terms at t0 = 0.

Assuming sufficient smoothness and applying the Frenet formulae, a curve � can be

expanded in terms of its curvature at t0 = 0:�(t) = �(0)+ T (0) �t� �(0))26 t3 +O(t4)�+ N(0) ��(0)2 t2 + �0(0)6 t3 +O(t4)� (2.4)

Substituting the curvature expansion, eq. 2.4, into the representation of the bisector,

eq. 2.3, and determining the intersection q of the bisector with the straight line in

normal direction through �(0) one obtainsri = 1�(0) �1� �0(0)3�(0) ti +O(t2i )� (2.5)

for the distance ri = kqi � �(0)k between �(0) and the intersection q of the straight

line in normal direction through �(0) with bi.
The smaller of the two values r�1 and r1 defines the radius of curvature at t0 by the

Voronoi intersection method. No distinction between the two values can be made by

general consideration. Equation 2.5 represents the general precision for the approx-

imation of the radius of curvature by intersecting straight lines in normal direction

with the local Voronoi cell.

We now analyse the effect of uncertainty in the normal N(0) on the position of the
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Figure 2.12: Sketch of the 2D precision analysis. See text for details. Note that the discretisa-

tion in this case is a particularly bad approximation of the center of curvature, as the curvature

properties of the edges (t0; t1) and (t�1; t0) are quite different from each other.

computed center of curvature g. Assume that the normal vector N(0) is only known

within an angular tolerance of ��, see Fig. 2.12. The estimate for the center of cur-

vature deviate by a distance E = kq � gk from the previously computed center of

curvature q.

Consider the situation as shown in Fig. 2.12: Æ denotes the turning angle, i.e. the angle

between the vector �(t1)��(0) and the tangent T (0) at �(0). This angle is the same as

the angle formed by the straight line in normal direction through �(0) and the bisectorb1(s). The angle Æ is a simple integral of the curvature [83], and is given byÆ = Z t10 �(t)dt = �(0) t �1 + �0(0)2�(0) t+O(t2)� : (2.6)

The distance E = kq�gk is then related to the angles Æ and � and the computed radius

of curvature r1 = kq � �(0)k byEr1 = sin �sin(� � Æ � �) � �Æ � ��(0) t : (2.7)

The approximation is valid if �=Æ, � and Æ are small.

For the approximation of the center of curvature by intersecting local Voronoi cells

with straight lines in normal direction in 2D we conclude:

(a) The approximation converges, and the error is linear in the quality of the discreti-

sation, measured in terms of �0=�.
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(b) Imprecision of the curve normals leads to an error which is of the order of the

maximal error in the normal angle compared to the turning angle per edge. If the

error in normal angle is purely due to limited numerical precision whereas the turn-

ing angle remains small but finite, the error in the curvature center estimate is small.

Discretising almost flat parts of the curve with short edges leads to problems.

Medial surface points coincident with centers of curvatures (analysed in this appendix)

lead to the largest uncertainty. As is clear from Fig. 2.12, uncertainty in normal direc-

tions is most significant in this case. The precision analysis presented here therefore

represents an upper estimate for the errors.

The results described above are almost immediately applicable to the 3D case: For a

given vertex p 2 S, one now has to identify all n nearest neighbours fpi 2 Sg of p.

Nearest neighbours in this context means all vertices p 2 V which are connected by

an edge of the Delaunay triangulation to p and are close to p as measured along a path

on S.

For each nearest-neighbour pi, one intersects the straight line in normal direction

through p with the perpendicular bisector between p and pi (which is in this case a

plane containing the corresponding Voronoi facet). Again, the local Voronoi cell is

defined as the set of perpendicular bisectors between p and all neighbouring points.

We define a planar curve � to be a unit speed curve lying within the intersection ofS with a plane containing the surface normal N(p), the point p and the point pi. We

define T� as the tangent to � in p. The curvature of � at the point p is then (up to a

sign change) the normal curvature Kp(T�) of S in the direction of T�, see Corollary

16.8 in [83]. Thus, the 2D analysis above is equally applicable to the approximation ofKp(T�).
Intersecting all n nearest-neighbour Voronoi facets yields an approximation to the

smallest of the positive radii of curvature (which is the relevant one for MS purposes).

The quality of this approximation is then related to the curvature properties of curves� � S by the above 2D curvature analysis (We neglect effects of the neighbour vertices

not sampling every direction from p).

The analysis presented here shows that our algorithm is robust for surface data with

only minor imprecision in point and normal coordinates. The susceptibility to noise

arises from the intersection of the long and thin Voronoi cells with the straight lines

in normal direction. We mention that an MS approximation using the poles does not

show this sensitivity.
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2.7 Other MS algorithms and domain representations

Other algorithms for the computation of the MS and related line skeletons exist. Also

a different representation of a domain, as a binary 3D data set, is commonly used.

This section provides a brief overview of these alternatives. Common skeletonisation

procedures for the computation of centered line graphs and skeletons are described

in chapter 3.

Computations of MS that determine the locus of singularities of the weak solutions of

Hamilton-Jacobi PDEs modeling wave-propagation exist, see e.g. [115, 81].

A different representation for the domain is via discrete binary 3D images or arrays,

called voxelised representations (A voxel is the 3D equivalent of a 2D pixel). Space is

subdivided into cubic voxel lattice, and each voxel is assigned either 0 or 1. The voxels

at the interface between 0 and 1 then represent the surface.

Computation of medial surfaces for voxelised data sets is difficult. This is an immedi-

ate consequence of the conceptual sensitivities of the MS to the shape of the domain, in

particular to the normal direction of the boundary surface S. In voxelised space, nor-

mal directions are evidently rational directions (as vector components are integers)

and discretised. Further, even the notion of a sphere in voxel space presents some

ambiguity.

For this representation MS algorithms based on thinning (or burning) ideas have been

suggested [130, 75]. Wave-propagation ideas and cellular automata have been used

[68]. An approach based on Chamfer distances is given in [173]. Another idea based

on distance fields is presented in [22].

MS computation of polyhedral structures, where corners and edges are explicit fea-

tures of the object rather than artefacts due to the discretisation, have been demon-

strated [35].
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Chapter 3

Line graphs on the medial surface

The MS lies centered within the channels of a labyrinth, somehow reminiscent of a

graph model of the labyrinth. Yet, it is a set of 2D surface patches. This chapter

discusses the reduction of the MS to a true line graph consisting of 1D space curves

and retaining as much of the geometry as a line graph can.

The concept of skeletal graphs appears to be a useful one. It provides

a picturesque model of both the symmetry and the connectedness [...].

(A. Schoen, 1970)

This comment, by Alan Schoen, refers to skeletal graphs of infinite periodic minimal

surfaces, i.e. symmetric structures of clearly labyrinthine character with constant van-

ishing mean curvature. By skeletal graph he means a network of (presumably straight)

line segments meeting in nodes of connectedness of at least three and contained in the

labyrinthine regions.1

This chapter gives a more rigorous definition for a line skeleton of a labyrinthine do-

main than Schoen’s. It demonstrates that, for the case of strictly hyperbolic labyrinths

such as IPMS, the so-defined line graph is indeed useful and describes both the ge-

ometry and the topology correctly. However, we also show that there are labyrinthine

domains for which no definition of a line skeleton can simultaneously capture cor-

rectly the topology and geometry of the domain.

Our definition of a line skeleton puts emphasis on the fact that its edges – that are not

necessarily straight lines – are geometrically centered in the channels of the labyrinths.

1With this, somewhat lax definition, he realises that “it is not true that the topological structure of
a given IPMS implies the existence of a unique pair of dual skeletal graphs for that surface, unless it
is stipulated that the two skeletal graphs of an IPMS have the same space group as the IPMS”. His
particular attention was on some notion of duality between the two graphs of the two separate labyrinth.
In particular, his focus was on methods for constructing IPMS from two dual skeletal graphs. For one-
parameter families of IPMS with changing node-connectivity, such as the rPD family (6-coordinated at
the Primitive surface and 4-coordinated at the Diamond surface), Schoen’s line graph definition is not
sufficient to capture this change.
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“Geometrically centered” means that the line graph traces paths through the labyrinth

channels that are as distant as possible from the surface. Topological equivalence

between line graph and the labyrinth may be lacking in cases where topology and

geometry cannot be reconciled. In particular, depending on the cross-sectional shape,

a labyrinth channel may contain more than one “parallel” line graph segments.

The suggested approach consists of an analysis of the Euclidean distance map D
(EDM) that assigns to each point in the domain the distance to the bounding surface.

In most cases, the line skeleton connects maxima of this distance field by following

its “ridge lines”. The minimum along a ridge-line, between two maxima, are critical

inflection points of the EDM. They serve as a starting points for the ridge lines. At

any point on a segment of the graph shall the graph point be a local maximum of the

EDM in the plane perpendicular to the graph segment at that point. The principle is

analogous to tracing ridge lines in two-dimensional topographies.

Note that this definition does not rule out multiply-connected nodes which are not

maxima. Higher-connected saddles and even non-critical points can also be nodes of

the graph.

As the MS is already centered in a less strict sense (the EDM decreases in perpendic-

ular directions but may increase in directions tangential to the MS) it is clear that the

geometrically centered line skeleton has to be contained in the MS.

We describe an algorithm that determines this line graph for domains that are rep-

resented by (triangulations of) their bounding surface. In that case, the Euclidean

distance map is intimately related to the MS distance function. Our approach consists

in carrying out the complete analysis of the Euclidean distance map by analysing the

MS distance function on S or MS. The lack of differentiability of the distance function

and Euclidean distance map do not cause a problem for our definition or algorithm.

Our algorithm makes no assumptions with respect to a specific symmetry, shape or

topology of the labyrinth and is designed to work both on exact surface data, e.g. from

parameterisations of mathematical models, and on experimental data, e.g. from tomo-

graphic images. In the later case, however, it is subject to the noise sensitivity to noise

that is inherent to the definition of the MS. For experimental data, we have so far not

achieved an automated implementation of the algorithm – in particular a robust de-

tection of the saddle points of D is difficult. Nevertheless, tracing individual segments

of graphs of experimental data sets is already a helpful tool.

In general, a line graph cannot represent the complete geometry of a labyrinth. The

MS is already the optimal skeletonisation of a labyrinth in that it retains all topological

and geometric information. In that sense, any further reduction to a line graph is
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indeed only a picturesque model. However, in many instances a 1D line skeleton

or graph provides sufficient structural information about the labyrinth. Effectively,

reduction of the MS to a line graph corresponds to approximation of a labyrinth by a

network of tubes of circular cross-section and varying radius.

This chapter is organised as follows: Section 3.1 gives a short overview of existing

techniques. Sections 3.3 and 3.4 discuss the Euclidean distance map, its relation to the

MS distance function and the concept of geometrically centered curves as prerequi-

sites for the definition of the line graph. Section 3.5 defines the line graph as “lines

of steepest ascent” connecting local maxima of the distance function. The properties

of this line graph are illustrated by analysis of those cases where a compromise be-

tween topological and geometric requirements arises. Section 3.6 provides numerical

details about the detection of saddle points of the Euclidean distance map and lines

of steepest ascent. Finally, section 3.7 addresses the question of what the geometric

requirements for a domain are so that both requirements of topological equivalence

to the domain and geometric centeredness are met without compromise.

3.1 Related Work

The generation of line skeletons or centerlines of labyrinthine models is required for

some applications, e.g. in virtual navigation through channel systems in non invasive

surgery [223], in network models for fluid flow through porous materials [13, 200] or

animation control in computer visualisation [75]. It is also, implicitly, often assumed

in the description of regular space partitions, such as IPMS, where the name of the

surface may be derived from the underlying network graph [183].

Most algorithmic approaches to line skeletonisations are for the case of voxelised bi-

nary data sets2. There are two classes of basic methods, “Topological thinning” and

“Distance Transform methods”.

Topological thinning is a method that, starting from the solid domain C , iteratively re-

moves voxels from the outside of the domain such that the topology of C remains the

same, until the domain has been shrunk as much as possible yielding a (line) skeleton.

The topological equivalence of the skeleton and the original domain is ensured by the

rule that a voxel on the boundary of the domain is only removed if the number of

holes, cavities and connected parts of the domain remain the same.

2A voxelised binary data set is the 3D equivalent of a binary image where each pixel assumes either of
the values 0 or 1. A voxelised representation of a domainC is hence a division of space into nx�ny�nz
cubes, called “voxels”, and an assignment of values to each voxel such that all voxels inside C are set to
1, and all voxels not contained in C are set to 0.
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The geometrical centeredness of the line skeleton is not guaranteed when using a

purely topological method. A crude way of incorporating it to some extent is the

use of an “onion-peeling” idea, where voxels are processed in layers. In general, this

method does not lead to a centered skeleton with respect to the Euclidean metric.

“Distance-ordered thinning” incorporates a removal order given by the Euclidean dis-

tance map of the domain which ensures that the line skeleton is centered – under the

proviso that the labyrinth allows for a topology preserving and centered skeleton.

A major problem for line graph algorithms based on thinning of voxelised data sets

is the “end point criterion”. It provides rules which determine voxels that may be

removed without altering the topology, but shall be conserved for geometric reasons,

such as the point p0 in Fig. 3.2.

The literature on 3D thinning is too comprehensive to be reviewed in this context. We

refer to the references in [130, 144, 22].

Topological thinning methods are useful in that they guarantee the strict equivalence

of the domain topology and the line graph topology (holes, components, cavities).

An additional favourable aspect is that noise of the data set does not influence the

(connected components of the) line graph very much – provided it does not produce

topological artifacts.

A drawback of topological thinning methods is the lack of guarantee that the skeleton

is geometrically centered – even in those cases where no compromise between topo-

logical equivalence and geometrical centeredness is necessary3. Where a compromise

is necessary, as e.g. in the case doughnut vs. disk in Fig. 3.9, this class of algorithms

retains the topological requirement and not the geometric one.

Distance Transform methods compute the Euclidean distance map of the voxels in the

domain C , i.e. the distance to the nearest voxel in the other phase. The line graph is

then defined as a set of curves, maximally centered in some sense, that connect the

local maxima of the distance map [222, 75, 158].

The resulting skeleton is geometrically centered, at the expense of topological equiv-

alence between the domain and the line graph (in particular, a channel with bone-like

cross section as in Fig. 3.8 produces two parallel skeleton lines, but it is reduced to a

single line by thinning algorithms).

Fast computation of Euclidean distance maps is now feasible [179, 34]. Sensitivity to

undulations of the bounding surface of the domain and noise, leading to numerous

critical points and hence segments of the graph, need to be addressed.

Our definition of a line graph is closely related to the distance transform methods.

3Although in such cases, distance ordering can overcome this problem
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Discontinuity of H	 s

E3 n C E3 n C
Figure 3.1: Two examples where the line graph L is not a strong deformation retract of the

domain C. (Left) C has a channel that is not traversed by a segment of L. Any retraction H ofC onto L has points where it is not continuous. (Right) C has a channel that is crossed by two

“parallel” segments of L. Both retractions are discontinuous on lines in the figure.

In contrast to the works mentioned above, our numerical analysis is for triangulated

representations of the domain.

Very little literature on algorithmic approaches to line skeleton generation exists for

the case of domains represented as triangulated surfaces.

3.2 Topological equivalence of the domain and its line graph

Discussion of the homotopy relation between a domain and its line skeleton is ubiq-

uitous in the literature. This section gives a summary of this aspect.

A domain C and its line graph L are homotopic if they can be continuously deformed

into each other – by shrinking or swelling but without tearing or coalescing. That is,

every channel of C has exactly one graph segment running through it, and C and L
(and E3 n C and E3 n L) have equivalent holes, components and cavities.

In a mathematical formulation, homotopy equivalence between a domain C and its

line graph L is requires that L is a strong deformation retract of C . This means that

the domain can be shrunk to the line graph in a continuous way.

Let I be the closed interval [0; 1℄. Let L be a subspace of a topological space C . Then L
is called a strong deformation retract of C if there exists a continuous map H : D � I !D such that for any p 2 D and q 2 L the relations H(p; 0) = p, H(p; 1) 2 L, andH(q; t) = q hold for all t 2 I [195, 155].
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We illustrate with two examples, shown in Fig. 3.1, why it is sensible to require a line

graph to be a strong deformation retract of the domain if preservation of topological

properties is the crucial condition.

The first example is illustrated in Fig. 3.1 (left). If the domain C has a channel – in the

sense that E3 nC has a doughnut-like hole – that is not penetrated by a segment of the

line graph L, then no strong deformation retraction H can be found – the continuity

requirement is always violated on a topological disk, or at least some of its points,

spanning the channel. In this case E3 n C has a (doughnut-like) hole, whereas E 3 n L
does not.

Our line graph algorithm, presented in the subsequent sections, never violates the

equivalence of the domain C and the line graph L in this way; all channels of C are

traversed by at least one line graph segment.

The second type of violation of the homotopy equivalence is shown in Fig. 3.1 (right):

If the domain C has a channel that is crossed by more than one segment of the line

graph L, again there is no strong deformation retraction H . The line graph L forms a

ring that is not surrounding a connected section of E 3 n C , it forms a ring that could

topologically shrink to a point and vanish. The retraction H again exhibits a disconti-

nuity. In this example, L has a hole (or ring) that C does not have.

Our line graph algorithm will allow for such cases that arise e.g. for channels with a

bone-shaped cross-section such as shown in Fig. 3.8.

Algorithms based on thinning typically ensure that the line graph is a strong deforma-

tion retract of the domain, by assessing at each step (voxel removal) if the connectivity

and Euler characteristic is preserved [130, 143].

3.3 Euclidean distance maps and geometrically centered curves

The definition of a line graph proposed later in this chapter produces a skeleton that

is as well-centered in the channel labyrinth as possible. The definition relies on the

notion of “geometrically centered” curves which in turn are defined with reference to

the Euclidean distance map D. These concepts are now formalised.

Given a domain C bounded by a surface S in E3 the Euclidean distance map (EDM)

is the function D : C � E3 ! R+ ; p 7! D(p) = minq2�C jp� qj (3.1)
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Figure 3.2: Euclidean distance map of the domain C (white): The Euclidean distance map

assigns to a point p 2 C the distance to the closest point, denoted q, on S = �C. On the MS ofC, the Euclidean distance map D corresponds to the distance function d. Saddles and maxima

of D are on the MS. The dotted line to p0 is a an example of a geometrically centered line that

is not on the MS. The thick arrows indicate directions of increasing EDM D.

where j:j denotes the Euclidean distance in E3 . Hence, D(p) is the distance from a

point p 2 C to its closest point on the bounding surface of the domain [39, 221, 171].4

For points p on the MS, the Euclidean distance map and the distance function at cor-

responding points q 2 S, with ms(q) = p, are identical: D(p) = d(q).
The Euclidean distance map D has a gradient of constant amplitude jrDj = 1 onC n ms(C), and is not differentiable on ms(C) (Trivially, for a point p 2 C n ms(C)
the gradient of the EDM is (rD)(p) = N(q) where q 2 S = �C is the point on S
that minimises jp � qj and N = N(q) the surface normal vector of p pointing into the

domain C . Because of the assumption that p =2 ms(C) it is assured that q is unique)

Because of this fact, a definition of critical points using the differential or the condition

that rD = 0 is not sensible for the EDM. Instead, we define a point p 2 E 3 as a critical

point of rank n of D if there are n linearly independent vectors vi such that D(p+ r vi)
has a maximum at r = 0 and 3�n linearly independent vectors vi such that D(p+r vi)
has a minimum at r = 0.

With this notation maxima and minima are n = 3 and n = 0 critical points, and n = 2
critical points shall be called saddle points. It is immediately clear that maxima and

saddle points are on the MS of C .

4For voxelised representations, the EDM for a voxel in one phase is the minimum distance from a
voxel p 2 S to the nearest voxel of the other phase, i.e. of E3 n C rather than �C.
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Figure 3.3: Illustration of the definition of geometrically centered: A space curve 
(t) : [0; 1℄ !E3 is geometrically centered with respect to the EDM D : E3 ! R+ if any p 2 
 is a local

maximum of (or at least constant in) the EDM in the plane perpendicular to 
 at p, i.e. in the

plane spanned by the normal �N and binormal �B = N � T of 
.

Geometrically centered space curves

A space curve 
 : [0; 1℄ ! E 3 is geometrically centered within the domain C if for any

value 0 < t < 1 the point p = 
(t) is a local maximum of D (or at least constant) in the

plane spanned by the normal N(t) and the binormal B(t) of the space curve 
, i.e. in

the plane perpendicular to 
 at 
(t) (see Fig. 3.3).

A geometrically centered curve � is not necessarily on the MS, e.g. a radial line em-

anating from a point p on a spherical cap of S is geometrically centered, see Fig. 3.2.

A geometrically centered curve passes through a section of a labyrinth such that, at

least locally, the distance, in perpendicular direction, to the boundaries of the domain

is always kept maximal. This is the guiding idea behind the definition.

If 
 is a geometrically centered curved and p
 = 
(t
) a minimum of D along 
, thenp
 is a saddle point of D. Following 
 in either direction from p
 leads to a maximum

of D. More precisely, it eventually leads to a maximum, but may pass through other

saddle points. This is analogous to a ridge line in a topography that terminates at the

saddle point of another ridge line.

3.4 Relation between saddle points of d and D
The distance function d on the surface S and the Euclidean distance map D in E3 , and

in particular their “gradients”, bear a close relationship. For domains represented by
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p2 = max of dp1 6= max of d
p3q2

Figure 3.4: Illustration of a situation where a point p2 is a maximum of d on S, but the corre-

sponding point ms(p2) is not a maximum of D: The outline S is a composition of straight lines

and circular arcs. The point p2 is a maximum of d whereas p1 and p3 are not. The points on S
corresponding to the maximum q2 of the Euclidean distance map D are all part of a circular

arc (one connected subset of S).

triangulations of their bounding surface S, the distance function d on S is the more

natural representation. Our detection of saddle points of the Euclidean distance mapD relies on the relation between rD and ms(rd). In this section, we define saddles

and maxima of d on S using the concept of Hopf singularities of d. The relation be-

tween saddles of D and saddles of d is explained. In particular, we will see that there

are saddles q of D whose counterparts p 2 S with ms(p) = q are not saddle points

of d. Less intuitively, there are also saddles p 2 S of d with corresponding MS pointsq = ms(p) that are not saddles of D.

We consider the distance functiond : S (or MS)! R+ (3.2)

as defined in eq. 2.1. In this chapter we restrict ourselves to surfaces S that are smooth

manifolds in E3 . We also consider the “gradient function” rd : S ! T()S that assigns

to each point p 2 S the direction of steepest ascent of d; this direction is evidently a

vector in the tangent plane TpS of S at p.

We denote this function “gradient function” in inverted commas since the distance

function d does not necessarily possess continuous derivatives. Therefore, the canon-

ical definition of the gradient as partial or directional derivatives fails. However, the

direction of steepest ascent is guaranteed to exist as d is at least continuous. The sec-

ond requirement for our definition of the gradient function is that a tangent field exists

for all points p 2 S. This is assured as we assume S to be a smooth manifold.
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z = �1

z = 1

z = �2

z = 1

z = 2
Figure 3.5: Definition of the index z of singularities of the vector field rd in the plane.

(adapted from Hopf [92])

Definition of saddle points of d via the Hopf index

Saddle points of d are defined through consideration of the gradient rd: The vector

field rd is continuous except at a finite number of points that are called the singular

points of d. The index of a singularity is defined by the following construction that

we explain for the simpler case where S is a plane (see Fig. 3.5): The angle � that rd
subtends with a fixed vector T in (the tangent plane of) S is evaluated at all points

on a closed path C on S around a singular point p. The integrated total change of� along the closed path C is an integer multiple 2�� of 2� because of the continuity.

The integral multiple j is called the index of the singularity. The so-defined index

does not depend on the particular path as long as the path does not contain any other

singularity than p.

For the case of a non-planar surface S the definition of the integrated change of an-

gle needs to be refined: The notion of a fixed vector T in the tangent space of S does

not carry over to a non-planar manifold S where the tangent space TpS depends onp. Instead of integrating the angle that rd subtends with a fixed direction, one inte-

grates the change of the angle betweenrd and a second non-singular test vector field

along a simple closed curve on S around p. Again it turns out that this definition is

independent of the particular test vector field.

Maxima and minima of d are singularities of rd with index +1. A saddle point is a

singular point p 2 S with index -1, and a monkey saddle a singular point with index

-2. Becauserd is derived as a gradient-like field, singular points with positive indices
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greater than 1 do not occur [92].

Saddles at normal MS points are saddles of both D and d
The relation between saddles of D and saddles of d is simple only in one special case:

A MS point that has exactly two corresponding surface points (“normal”) and is a

saddle of D corresponds to two saddle points of d on S.

Saddles of d that are not saddles of D
A simple 2D example for a point that is a maximum on S but not a maximum of D on

MS is shown in Fig. 3.4. If the diagram is considered as the cross-section of a straight

cylinder of varying cross-sectional size but constant cross-sectional shape, and such

that the paper plane represents the minimal cross-sectional size, then p2 is a saddle

point of d on S, but ms(p2) is not a critical point of D.

This case arises e.g. in the case of the infinite periodic Gyroid minimal surface, see

Fig. 5.9. The point S3, the small green sphere on the MS on the edge of the triangle on

the two-fold rotational axis, corresponds to three points on the Gyroid surface. Two of

them are not special points of d, but the third one, also on the two-fold axis away from

the MS, is a saddle point with Hopf index -1. On S, there are two paths of steepest

ascent emanating from this point that map to paths running along the edge of the

triangle (where the blue and red “sails” meet) to the two maxima at the vertices of the

triangle. This path is not a path of steepest ascent of D in E 3 .

Fig. 3.4 also demonstrates that a maximum (or another critical points) of the 3D Eu-

clidean distance map D, that by definition lies on the MS, may correspond to a finite

subset s (or a set of finite subsets) of S rather than just a number of isolated contact

points. Hence, procedures to detect critical points of d must accommodate for that

scenario.

A similar case actually arises when analysing Schwarz’ Primitive surface whose MS

and line graph is shown in Fig. 5.7. The planar constrictions in 100 planes are nearly

circular, with radius variations of only 3.3% – in contrast to the value of 0.4% given

by [183]. Hence, variations of the distance function on the surface points represent-

ing the ring are very small and hard to detect. The common approximation of the

Primitive surface as the zero-level set of 
os x+ 
os y+ 
os z = 0 has perfectly circular

constrictions, and the MS correspondingly shrinks to a point and the corresponding

set of points on S be a ring of degenerate points.
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s1o *
ms(s1)ms(m1) + Tx= ms(m2) + Tx

K
ms(s1) + TxÆ

s2
U

m26

m1?ms(s2) R
ms(s2) R

Figure 3.6: Saddle points of d on S are not necessarily saddles of D: (Left) Shown is a portion

of the Primitive surface and a (different) portion of the MS of the P surface. The color scheme

on one side of the surface indicates the isodistance lines on S (see page 193), the other side

is colored blue. Also shown are two saddle points s1 and s2 and two maxima m1 and m2
of d on S. The blue and red arrows on S at s1 and s2 indicate directions, tangential to S,

of maximal increase and decrease of d, respectively. The blue line on S is a path of steepest

ascent from s1 to m1 and to m2. The blue line on MS is the same line mapped onto MS –

and corresponds to the lines of steepest ascent of D (However, as the surface occludes the

portion of the MS that contains ms(s1) and ms(m1) = ms(m2), the corresponding line on the

neighbouring translational unit cell is shown) Note that the two path to m1 and m2 coincide

on MS. (Right) close up representations of ms(s1) and ms(s2). Blue and red arrows indicate

directions in which the Euclidean distance function D increases and decreases, respectively.

The directions corresponding to the on-surface directions from the left image are part of these

arrows. For s2 the four directions on S correspond to four distinct directions on MS. This is

a necessary condition for ms(s2) to be a saddle point. In contrast, for s1 the two directions of

increasing d on S coincide on MS. ms(s1) is not a saddle point. From the definition of the MS it

is evident that directions not tangential to MS always represent decreasing Euclidean distance

function D.

A second situation in which a saddle of d is not a saddle of D is illustrated in Fig. 3.6:

There are saddle points of d on S with Hopf index -1 that map onto points on the

boundary of the MS such that the two directions �T� in which the d maximally de-

creases map onto the edge of the MS, and the two directions �T+ 2 TpS in which thed maximally increases map onto each other pointing into the MS patch.

The paths of steepest ascent emanating from such a saddle point typically terminate at
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two maxima m1 and m2 that map onto the same point on the MS ms(m1) = ms(m2).
A saddle of D that is not a saddle of d
We now show the inverse, less intuitive and more complicated case where all pointsp 2 S that map onto a saddle point q of D, i.e. ms(pi) = q, are non-critical points pi and

in particular not saddles. Fig. 3.7 provides the illustration. The image on the top left

gives a (flawed but useful) planar analogy: The point q is a saddle point of D in C5, at

a branch point of the medial axis with two angles slightly larger than �=2 and a third

one close to �. The points p2 and p4, that both map onto q are not saddles of d; ratherd increases continuously and monotonously at both.6 The point q, corresponding top2 and p4 is a saddle point by virtue of the images (arrows on MS) of their gradientsrd(p2) and rd(p4) (arrows on S) pointing in different directions on the MS.

The example is flawed, as the third point p1 always is a minimum of d – and hence

there is a critical point p on MS that corresponds to the saddle q of D. This cannot be

avoided in the plane. In 3D, however, this situation can occur without this caveat. The

example we use to illustrate this situation is taken from the I-WP surface, to be more

precise the I-labyrinth, described in chapter 5. It is also similar to the MS of the cubic

Diamond surface.

In Fig. 3.7 (right) a portion of the MS of a hypothetical domain C with skin S is shown

that contains a straight edge, the thick black line, with a point q at its center. The left

half of the edge is at the intersection of three nearly triangular and flat surface patches,

that subtend angles 2�=3 with each other. The right half results from inversion in E3
of the left half in q, i.e. the flat patches are rotated by �=3 around the axis compared to

those on the left half. Near the edge center, where the surface patches narrow down to

the point q, small “webs” are spanned between the edges of pairs of adjacent patches,

from the edge of a triangular patch on the left (L1 to the edges of the patches on the

right at ��=3 (R1 and R2). This arrangement creates six compartments around the

edge, three of which are visible in the figure near the edge center. In particular, the

point q on MS has six corresponding points pi on S.

For each of these compartments, e.g. the light gray one in the foreground, there is

a single, simply-connected surface patch ~S � S that maps onto that compartment.

The point pi 2 ~S with ms(pi) = q on this patch is not a special point of the distance

function d. Yet, when the six points pi from the different patches collapse onto q, then

the arrangement of their gradients makes the point q a saddle point of D.

5A saddle point of D in 2D is a point with two directions of increasing EDM and two decreasing ones.
6This is not possible if the medial axis branch point angle is less than �=2.
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C
E3 n C
MS p1

p3 p4p2 q3q
�

triangular patch L1 web

� R1� R2I
two-fold axis

Np Np
2�=3 A

q
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rD1N rD2O
rd(p1)

rd(p2)�
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(rD)2(rD)1� 	p1
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Figure 3.7: A saddle of the Euclidean distance map D that does not correspond to any saddle

(or minima or maxima) of the MS distance function on S: (Top left) Planar example where two

of three surface points corresponding to a saddle point of D on MS are normal points. The

domain is shown in white. (Right) Hypothetical MS of a structure very similar to the cubic

Diamond IPMS. Details are described in the main text. (Bottom left) Cross-section through the

plane from the left figure that contains the straight edge with q at its center and with normal

vector Np.

Fig. 3.7 (Left, bottom) clarifies this situation, showing the cross-section through the

plane with normal NP : The patch ~S contains a plane line that maps onto the planar

path 
 from A to q along the edge and then, along the edge of the corresponding

surface patch half-way in between, to D (for clarity, an equivalent point D0 is also

shown). The cross-section through the plane with normal NP contains both the path
 on S and its image ms(
) on MS. It becomes clear that the points p1 and p2 are not

special points of d; in particular their gradients are well defined vectors rd(p1=2) onS. In direction of 
0(pi) through pi, the distance function is monotonous. Yet, when

the gradients are mapped on the MS, they point in opposite directions away from q,

thus making q a saddle point of D.

This situation is realised for the “innen-zentriert” labyrinth of the unbalanced I-WP

surface (In Fig. 5.10, bottom, the equivalent situation is covered by the yellow spheres).

It is also very similar to the MS of the Diamond surface where, at first, we thought this

situation was realised. Yet, in that case, the point q is actually an ever so slight max-
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imum and an additional saddle point – both of d and D – on the edge exists; see

chapter 5.5. This example here is hypothetical in that the surface generating this MS is

not known, and may not even exist. Yet, because of the tiny difference to the Diamond

case we suspect it does.

For any practical purpose, e.g. detection of saddle points of D via detection of saddle

points of d, the Diamond case has to be considered identical to the one discussed here.

The true relation between saddles of d and D
The implication of this result for the detection of saddles of D by analysing the func-

tion d on S is severe: it means that the set of saddles of D is not just a subset (and

certainly not identical) to the images under ms of all saddle points of d. This means

that the natural representation of d as a function on S is not sufficient to characterise

the critical point structure of D. In addition, knowledge of the set of points that col-

lapse onto a point on the MS is necessary.

However, an equivalence relation between gradients of D and gradients of d exists:

restricted to that subvolume of space that corresponds to a patch of S (i.e. the volume

foliated by (reduced) parallel surfaces of S) the direction of strongest increase of D at

a point q corresponds to the direction of the gradient d on S.

Bearing this in mind, it becomes clear that a saddle q of D either corresponds to a

saddle point of d, or the gradient images ms(rd(pi)) of the two or more points pi 2 S
with ms(pi) = q point in distinctly different directions. This is very useful for the

saddle point detection described below.

3.5 Formal definition of a geometrically centered line graph

This section gives our definition of the line graph, and outlines some of its properties,

advantages and shortcomings. Our definition leads to a geometrically centered graph,

at the expense of a guarantee of the homotopy equivalence between S and the line

graph. However, it is assured that every channel is traversed by at least one line graph

segment.

We define a line graph to be a finite set of n finite curves �i : [0; 1℄ ! E3 such that

1. every segment is fully contained in the MS and is geometrically centered in C
and emanates from a saddle point of D, and

2. all geometrically centered curves emanating from a saddle point D are part of

the line graph.
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geom. centered points

	 R sSI �MS MS

Figure 3.8: Illustration for the fact that a single channel can be traversed by more than one

geometrically centred curve: Shown are the cross-sections of two “throats” of a labyrinth that

extend in perpendicular direction in and out of the page. The solid disks indicate the posi-

tions of geometrically centred curves through the throats. The arrows indicate directions of

increasing distance function D near these positions. In the case of the channel with elliptic

cross-section there is only one geometrically centred curve that is, quite intuitively, positioned

in the centre of the ellipse. In the case of the throat with bone-shaped cross-section, there are

two such positions. If no more than one segment may run through the channel, one would

presumably expect the curve to run through the center (the open circle) which is not geomet-

rically centred.

As said before, this definition puts strong emphasis on the geometric centeredness of

the line graph in the domain C . The edges are paths of maximal distance to S throughC . A sphere – of varying radius that always adapts to the maximal size that fits into

the domain C – follows the segments of the so defined line graph as it moves through

the domain. The saddle points are the bottle-necks along the paths.

Note that we have not explicitly specified the end points of the segments. The reason

for that is the fact that the end point, though most often a maximum of D, may also be

another saddle (as for the rhombohedral Gyroid with �0 = 0:35�, see Fig. 6.7). Also

there is the possibility of degeneracy of parts of the segments (as in Fig. 3.10) before

reaching its end point.

This definition of a line graph was inspired by the work of Richard Bader [11] who

defined a molecular bond, rigorously, as the critical paths between saddle points and

maxima of the electron density. The possibility of two distinct “parallel” path con-

necting the same two maxima (atoms) can be ruled out for physical reasons. An im-

portant difference is that the electron density is differentiable everywhere apart from

at the positions of the atoms themselves.
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Figure 3.9: Three different triple labyrinth junctions showing that surface topology and graph

topology do not necessarily match. (Top) cross section of three rotationally symmetric “pores”.

Not shown are the three tunnels joining the “pore” at three equidistant angles. (Bottom) top

view of the pores together with the three emanating tunnels (that are assumed to be of circular

cross section and joining the pore surface smoothly). Also shown, as dashed lines, are the

graphs generated by tracing geometrically centered lines.

Topological non-equivalence of C and its line graph

The drawback of this definition is that the topology of the line graph defined in this

way and that of the domain C may be different: a single channel may be traversed by

more than one, “parallel”, graph segment ( Consider the example in Fig. 3.8).

Another example demonstrating that homotopy equivalence between the domain sur-

face and the line graph (as defined by geometrically centered lines) can in general not

be assumed is shown in Fig. 3.9: three channels, of say circular cross section, join

smoothly onto rotationally symmetric pores – ellipsoid, rotated bone and a doughnut.

The ellipsoid and the bone have the same topology as a simple sphere, different from

the doughnut. Nevertheless, they yield two different line graphs. The doughnut, in

turn, has the same line graph as the rotated bone. In particular, the line graph of the

rotated bone contains rings that can be contracted to a point. The ellipsoid and the ro-

tated bone can be smoothly transformed into each other, with a sharp transition when

the graph jumps from the single three-coordinated node to a triplet of three-connected

nodes.
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Figure 3.10: (Left) A 2D example where the medial axis has a junction, a three-coordinated

point that is not a critical point of the distance function d. The thick black line is the medial axis

of the outline given by the thinner solid black line. Dashed circles are maximal disks, dotted

circles only serve to clarify the construction. (Bottom right) A triple junction of a planar MA

with two edges with increasing d and one with decreasing d cannot exist. (Top right) A planar

ribbon-like MS of a three-dimensional network of ellipse-shaped channels with a Y-junction

of that type can exist.

Degenerate edges

Two segments of the line graph may follow, for parts of their lengths, the same path.

The geometric position of nodes of the line graph is not necessarily coincidental to the

position of critical points of D: The notion that the line graph traces critical paths of

the distance function, starting at saddle points and ending – eventually – at maxima

or saddles, seems to suggest that its nodes are critical points of d. This is not correct

as the example in Fig. 3.10 demonstrates.

The construction is as follows: A maximal disk B centered at q is drawn in the plane.

Then three auxiliary balls are drawn that all touch B, one right below and another

two as mirror images on the right and left of B slightly lower than q. The outline S is

then a composition of circular arcs on the auxiliary balls plus straight lines tangential

to the balls as shown in the figure.

It is easily verified that the thick black line is indeed the medial axis of S and that q
is not a maximum or inflection point of D (or d). Any procedure that traces critical

paths of D (or d), starting from saddles aiming for maxima, may detect the geomet-

rically correct line graph, but will miss the junction as a topological feature. This
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construction can be extended to 3D, simply by keeping the same line graph as the MS

of the envelope of a set of spheres with radius given by the 2D distance function.

The reverse situation of a line splitting at a non-critical point does not occur in 2D.

In 2D, a geometrically centered curve emanating from a saddle of D cannot split into

two separate channels at a three-node that is not a critical point of D. The argument,

illustrated in Fig. 3.10 (right) is based on analysis of possible maximal disk sizes in the

vicinity of an MS point with 3 corresponding surface points.

A maximal sphere K of a domain C , centered at q, corresponding to the two surface

points p1 and p2, has radius r. A second maximal disk ~K in C is centered at a point~q, within the triangle 4(q; p1; p2) and is w.l.o.g. assumed to be closer to p1 than p2.

Regardless of the shape of C , its radius has to be smaller than r as long as the opening

angle � is less than �. Otherwise it would not be maximal as it would contain the

point p1.

This means that the MS distance function d can only increase (or even remain con-

stant) along an MA segment in the direction of an opening angle � equal or greater to�. From that, it follows that at any point on the MA there can be at most two directions

of increasing d on the MA. If there are two, � = � must hold, the two directions are

colinear and the points on �C corresponding to q are exactly the two points p1 andp2. That means that a triple junction with one thinning channel and two expanding

channels is not possible.

The three-dimensional case is different. A situation as depicted in Fig. 3.10 (top right)

where the MS is a flat ribbon that splits into two and the line graph “Y”-shaped on it,

can exhibit a triple junction of the line graph without an n > 2 MS point. The maximal

spheres within the ribbon all have two corresponding points on S above and below.

Our implementation of the line graph does not cope with this situation, which can be

aggravated by a vanishing angle � between the two arms of the graph. The difficulty

arises because it is only possible to assess how many segments emanate from a saddle,

but not to locally test for the number of graph segments that hit a maxima. A possible

solution may be to incorporate global topological information from different types of

line graph algorithms such as thinning.

3.6 Computation of the line graph

This section discusses the implementation of the two essential steps to determine the

line graph: (1) the detection of saddle points of D, and (2) the computation of finding

lines of steepest ascent that connect the saddle points to the corresponding maxima.
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Following the previous discussion in section 3.4 on saddle points of d andD, we detect

saddles of D by detecting saddles of d and evaluating whether they correspond to

saddles of D, and by comparing the direction of the images on the MS of the gradient

of d of all those points that collapse to a single MS point. Therefore, in a first section

we describe a method to detect saddle points of d on triangulated surfaces S. Then

the selection of those points that are also saddles of D is described.

We propose the following data structures: The sample points on S are stored together

with values of their distance function and their corresponding point coordinates when

mapped onto the MS. In addition, two proximity functions are provided that, given a

point on S or the MS and a distance r, return all points on the MS and S in a sphere of

radius r around the point p, respectively.

The question may be asked why a detection of saddle points of d is at all necessary. A

detection of D saddles based on the detection of directions of increase of D is possi-

ble. Yet, use of surface based methods provides for more flexible parameters, such as

the minimum angle between two neighbouring directions of steepest ascent out of a

saddle point, and additional assessment of the properties of a point based on the MS

degree.

3.6.1 Detection of saddle points of the distance function on S
A method to detect saddle points on S without explicit evaluation of derivatives is

presented. Some of the notation is borrowed from Hopf [92].

As motivated earlier, saddle points are points with two or more directions of increas-

ing distance function and a corresponding number of directions with decreasing dis-

tance function.

Assume, for the moment, that saddle points are single points on S rather than finite

subsets of S (lines or even surface patches) on which the distance function d is con-

stant.

We now discuss a method of detecting the saddle points that consists of the following

steps: for each point p on S, with distance function d
 = d(p), a circle 
 of radius r
on S around p is determined. The distance function d is analysed as a function of the

angle � between a point on 
 and an arbitrary, tangential reference direction, e.g. the

direction of the distance function maximum on the circle. A point p cannot be a saddle

point unless d(�)� d
 has at least two positive maxima and two negative minima7. A

7This approach obviously does not detect saddle points if the characteristic behaviour of d is restricted
to a surface patch contained inside the circle.
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Figure 3.11: Detection of saddle points by analysis of the distance function on circles of finite

radius r. Shown are portion of a surface S with iso-distance line. The distance function values

are indicated by the grayscale where darker colors indicate lower values of d. (Left) The dis-

tance function d(�) � d
, with d
 = d(p), on a circle around a saddle point p with Hopf indexz = �1 has two positive maxima, points 0 and 2, and two negative minima, points 1 and 3, as a

function of the angle alpha. Along a path on the surface connecting the two maxima (minima)

via p, the distance function shows a minimum (maximum) at p. This behaviour is observed

for all sufficiently small radii of the circle. (Right) A point p that is not a saddle point of d but

for which, for finite radius r, the distance function d(�)�d
 also has two positive maxima and

two negative minima. In contrast to a saddle point, the center point p does not simultaneously

represent the minimum along the path connecting the maxima and the maximum along the

path connecting the minima. Analysis of the distance l from this minima (the filled square)

and maxima (in this case the point p itself) to the center point can be used to discard some of

the saddle point candidates without the limit r ! 0.

point p is a saddle point if this holds true in the limit of vanishing r. See Fig. 3.11 for

an illustration.

For triangulated surface data we define a circle of radius r around a point p 2 S as

the intersection points of all edges of the triangulation with a sphere of radius r. We

implicitely assume that the circle is sufficiently small so that the intersection points

all stem from the same neighbourhood of p – and not from other patches of S that

happen to cross the sphere. This procedure is linear – albeit with a large prefactor –

in the total system size provided r is not of the same order as the dimensions of the

whole surface.

Note that for the definition of singularities the circle is only required to be a simple

closed curve on S. For numerical purposes, in particular to set noise thresholds, a

geometric circle is favourable. We define a circle as the set of points in a sufficiently

large neighbourhood of p on S that have 3D Euclidean distance r from p (rather than
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geodesic, in-surface, distance). Hence the circle is the intersection of S with a 3D

sphere of radius r around p.

However, exhibition of two positive maxima and two negative minima of d on a circle

with finite radius r around a point p is not a sufficient condition for p to be a saddle

point. Many other such configurations exist: First, all points in the vicinity (closer

than r) of a genuine saddle point p will display that property. Second, points on the

flanks of a valley, as in Fig. 3.11 (left), can lead to the same behaviour, as can points in

the vicinity of anisotropic minima or maxima of d.

Using very small circles for the saddle point detection is numerically impractical. Both

noise and finite resolution on S, of the order of the average edge length of the triangu-

lation, impair this procedure. Note that the variations in d that one tries to detect are

small compared to the difference between the global extrema of d; in the smooth case,

saddle points have vanishing first derivatives of d, and therefore the typical distance

function values on a circle of sufficiently small radius r increase as O(r2).
Therefore, we now present alternative criteria to eliminate points that have two or

more positive maxima and negative minima d on the circle but that are not saddle

points: first, such points in the vicinity of minima or maxima are eliminated by testing

the inside of the circle8 for extrema.

Furthermore, we make the assumption that, inside the test circle, the straight line

from the point p to the maximum (minimum) pm on the test circle9 represents the

ridge (valley) lines. Then, for a saddle point, the minimum (maximum) of d along

these lines should be the point p itself.

Points where the distance l between the minimum (maximum) along those radial lines

and the center point exceeds a threshold tolerance that accomodates for noise, cannot

be saddle points; see Fig. 3.11 (right). These points can be eliminated from the list of

candidates for saddle points.

If these constraints are taken into account with thresholds, one still identifies clusters

of points rather than individual triangulation vertices as saddle points. Therefore, in a

final step we identify all clusters of such candidates and reduce them to single points

by making another assumption. In principle, out of each cluster one may identify the

saddle point as the point for which the sum of distances (or squared distances) l be-

tween the�2(z+1) maxima and minima on the radial lines defined above is minimal

8For the actual implementation this means all triangulation vertices inside a sphere with a slightly
reduced radius compared to r

9“Straight line” in this context should denote the geodesic. In our implementation it is given by the
intersection points fqig of all edges of the triangulation inside the sphere of radius r around p with the
plane through p and pm that also contains the normal directionN(p), for which 0 � hqi�p; pm�pi=r � 1
(i.e. lie in between p and pm).
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Algorithm Detect Saddle points

Input:
Triangulation of S with distance function dr = Test circle radius�min = minimum angle between maxima of d on test circlefext = fraction of max. dmax for a point to be positivelmax = maximum distance of extremum on rays from saddle point

/* find candidates for saddle points in SV := ;
For all points p in S

Compute circle 
 of radius r around p
Determine distance function dr(�) := d� d(p) on 
 as function of �
Determine absolute maximum dmax and minimum dmin of dr
Det. n positive maxima fd+i g at f�+i g of dr with dr(d+i ) > fext dmax

and at least one point with dr < fext dmin between any 2 maxima.
Determine corresponding set of n negative minima fd�i g at f��i g
If n > 1 and mod (�+i � �+j ; 2�) > �minV = V [ fpg

/* analyse distance function on ray from p to max/min
For all points p in V

Det. paths Pi from p to maxima (minima) of dr on test circle
Det. distance li from minima (maxima) on these paths to p
If
P jlij=n > lmax
Remove p from V

/* identify clusters of saddle pointsSC = ;
For all p in V

Identify clusters � = fSCig with points q with jp� qj � r.
If � = ;

Append new cluster to SC that contains p
Else

Merge all clusters in � and append p
/* Reduce clusters to individual pointsV = ; = list of saddle points
For each cluster �

For each point p in �
Det. all n paths Pi from p to max (min) of dr on test circle
average-l = 0
For pair of paths P1 and P2

Fit a (x� b)2 + 
 to dr along the combined path
average-l + = b/n

Append point with minimal average-l to list V of saddle points

Figure 3.12: Description of the algorithm to detect saddle points of d on S.
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(z is the Hopf index). Numerically this is sensitive, and often the data needs to be

fitted. The assumption we make is that along the radial lines the distance function fits

a quadratic function a (x� b)2 + b in the distance x to p. The distance l is then l = jbj.
The saddle point identification process is summarised in Fig. 3.12.

Problems and Alternatives

Two problems associated with this approach are the following: Saddle points that

form a line or even a surface patch of constant distance function are only detected if

their spatial extent is smaller than the radius of the test circle r. This could be over-

come allowing for non-circular paths, e.g. by starting with a circle but then growing

further in those directions where the distance function does not exceed a prescribed

threshold.

Also, the approach presented is not a multi-scale method. If the surface S has regions

of different characteristic length scales, problems will be encountered. An approach

where the test circle radius is more dynamic may be more suitable for that problem.

It is inherently a local method for a problem that has global implications: The distance

function d induces two partitions of S into surface patches Pi through a watershed

type algorithm [211]. The first (second) partition is into “bassins of maxima (min-

ima) of d”, i.e. every point p 2 S is assigned to the maximum (minimum) which can

be reached along a path P along which the distance function d increases (decreases)

monotonically. The set of points where the boundaries of the patches of these two

distinct partitions coincide corresponds exactly to the set of saddle points.

This fact suggest an alternative procedure to detect the saddle points that avoids the

possibility of global inconsistencies – which, due to its local nature, our approach

cannot guarantee: compute the two partitions of S mentioned above and define the

overlap of the two sets as the saddle points of S.

Finally, we mention that the global aspect of the problem gives rise to a fascinating

theorem due to Hopf [92]: “The sum of the indices of all singularities of a regular

vectorfield is equal to the characteristic of the surface”:Xj zj = �(S) (3.3)

where S is “a closed surface possessing continuous first derivatives at every point”

and the sum is over all singularities of the vector field on S. A regular vector field is
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a “field of tangent vectors (of unit length) defined and continuous at all but a finite

number of points on this surface. These points are called singular points.”[92]10.

At least on periodic surfaces, that can be regarded as closed surfaces if compactified

[94], this theorem applies to the distance map d on S – providing a test for global

consistency of the detected critical points.

3.6.2 Saddle points of the Euclidean distance map D in E 3
After the preliminary discussion of the previous two sections, an identification proce-

dure for saddle points of D is easy to implement.

For each point on the MS all directions of steepest ascent are determined: These are the

images of the directions of steepest ascent on S at the corresponding surface points pi
(ms(pi) = q), i.e. the image ms(rd(pi) of the gradient of d on S and, for points pi that

are saddle points with Hopf-index n � �1, the images of the directions of maximal

increase.

With appropriate thresholding, a point is then called a saddle point if the maximal

angle between any pair of these directions exceeds a threshold-value. This threshold

value is the minimal angle between the emanating edges from a saddle point.

With a double-cover representation of the MS, with the triangulations of the two sides

not inter-connected except at the MS boundaries, identification of all surface points

corresponding to an MS point q is difficult. Our solution to this problem is using

a proximity test on the MS coordinates to detect nearby MS points. Alternatively, a

single-sided MS representation may be more suitable, and can be obtained from the

Voronoi diagram.

Finally, it is important to note that the saddle point identification process presented

here is based on inherently local tests. This is foolish given the global implications

of the saddle point and extrema structure of D. A combination of global approaches

(such as watersheds) with the presented local method is likely to yield a more robust

version of the saddle point detection. This is in particular desirable for experimental

data, where a local method tends to produce many artefacts.

3.6.3 Detection of lines of steepest ascent

Once the saddle points are identified lines of steepest ascent are easily determined.

Effectively, one advances the end point of the path on the MS by iteratively determin-

10An instructive discussion of the corresponding situation for the elevation on the globe is presented
in Maxwell’s “On Hills and Dales” [148].
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Figure 3.13: Tracing lines of steepest ascent starting from a saddle point of D. Shown is a patch

of the MS (see page 193 for a description of the color scheme), of the tD surface, together with

an intermediate step in the process of tracing a line graph segment. Starting from a saddle ofD, the path is iteratively advanced by determining the maximum on the distance function on

a sphere with radius equal to the desired step size (for practical purposes, one may exclude

points in a small angle interval around the previous point). The point pi+1 is the maximum on

the circle around pi. From a single saddle, at least two line graph segments emerge. If the MS

is flat in the vicinity of pi, the points on the sphere form a circle around pi. This is not the case

if the MS is curved, or if pi is on a branch line. Eventually, a maximum of D is reached.

ing maxima on the “circles” with radius equal to the desired step lengths around a

saddle point s and setting the new end point to that maximum. This is repeated until

a local maximum, or another saddle, of d is reached. See Fig. 3.13 for an illustration.

More precisely, for each saddle s 2 MS of D one determines the directions of maxi-

mally increasing distance function given as points mi 2 MS on the sphere around the

point s. The path emanating from s in direction of m1 shall be determined. The path

of steepest ascent P is intialised as P = fs;m1g with n = 2 elements. Iteratively, the

points C of MS on a sphere in E3 around the end point p of P and of radius equal

to the desired stepsize r are determined.11 Also, the points C 0 that are contained in

this sphere are determined. If the points C 0 contain a maximum (or possibly another

saddle) m of D, the end point of the path is found and appended to P . Otherwise, the

maximum pi+1 of D among the points C is appended to the path: P = P [ pi+1.

11Note that if p is on or near a branch line of MS, these points do not represent a circle, but rather circle
segments or curves on a sphere. Furthermore, even if MS is not branched in the vicinity of p, the points
still do not represent a geodesic circle on MS. However, as the task consists in integrating a function,D, defined on E3 rather than MS the stepsize should correspond to a distance in E3 and not a geodesic
in-surface distance on MS.
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The task of detecting a line x : [0; 1℄ ! MS of steepest ascent is analogous to the

problem of solving the equationrD = �x�t subject to x(t = 0) = s and
�x�t (t = 1) = ts (3.4)

if D is a smooth function for which the gradient is well-defined. The point s is the

saddle point of D from which the line graph segment x emanates, and ts one of the

directions of strongest increase out of the saddle s (the direction to the maximum on

the first circle).12

The algorithmic definition, in contrast to the differential one, carries over to the case of

a function D that does not necessarily possess continuous derivatives. In the smooth

case, it yields an approximation to the solution of eq. 3.4. The quality of the approx-

imation is obviously dependent on the stepsize r, i.e. the distance by which x is ad-

vanced in each step. It becomes an exact solution when r ! 0. However, in that limit

noise, the finite sampling of D on the MS and imprecision in the calculation of D are

more prominent than for larger stepsizes.

3.7 Representability of a labyrinth by a line graph

Much of the discussion in this chapter has focussed on the fundamental problem that

geometric and topological requirements for a line graph cannot always be achieved

simultaneously. This points to two questions: first, what are the labyrinths for which

a line graph can be topologically equivalent to the domain and geometrically centered

at the same time? Second, can a “quality measure” be found indicating how well a

line graph represents a labyrinth? This section comments on these two issues.

Concerning the first question we notice that the examples where geometric and topo-

logical requirements could not be reconciled are domains with boundaries that are, at

least on parts of their bounding surfaces S, not hyperbolic, i.e. have positive Gaussian

curvature. In particular, labyrinth shapes with channels that are lengthwise divided

into two streams by a narrow region that runs along the middle of a channel, such as

12For the case of the smooth function map D, the definition and classification of saddle points, maxima
and minima can be made more precise, and is part of standard textbooks: A critical point is a point p
where the gradient of the distance map D vanishes : rD(p) = 0. If the point p is a maximum, minimum
or a saddle point depends on the second derivative of D. The second derivative is represented by the3� 3 symmetric Hessian matrix of D. Its three eigenvectors are called principal axes of curvature as the
magnitudes of the three second derivatives of D calculated with respect to these axes are extremised.
The number of positive and negative eigenvalues of the Hessian then determines if the point is a saddle,
minimum or maximum. Degeneracy, i.e. rank of the Hessian smaller than 3, need to be considered
separately. This discussion is taken from Bader [11].
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the bone-shaped cross-section in Fig. 3.14, seem impossible for a strictly hyperbolic

bounding surface. Similarly, the pore with three connected channels and a distance

function minimum at its center in Fig. 3.10 (middle) is inherently not hyperbolic.13

Furthermore, labyrinths with strictly hyperbolic bounding surface never have “dead-

ends”, i.e. channels that do not connect; some parts of a dead end necessarily have

positive Gaussian curvature.

Based on these observations, and on the empirical evidence that the line graphs of

all analysed IPMS have not required a compromise between the topological and ge-

ometric requirements, we suspect that labyrinths with strictly hyperbolic bounding

surfaces, K � 0, allow for geometrically centered line graphs that have the same ho-

motopy type as the labyrinths themselves.

For the discussion of the second issue, a measure assessing how well a labyrinth can

be approximated by a line graph, it is useful to consider the reconstructability of the

domain from the line graph and the relation to the MS: For a labyrinth that is es-

sentially the union of balls (of varying diameter) centered on 1D space curves14 the

medial surface degenerates to a set of connected 1D space curves. By our definition

the medial surface and the line graph are identical in this case. The union of maximal

spheres on the line graph provides a complete reconstruction of the labyrinth.

In the essence, representing a labyrinth by a line graph corresponds to represent-

ing the labyrinth as a network of (possibly overlapping15) tubes with circular cross-

section.

A possible measure to assess how well and how efficiently, in terms of space filling,

a line graph represents the geometry of the labyrinth is given by comparision of the

volume of the reconstructed and the original domain: Let V o denote the total volume

of the original domain, and V r the volume of the union of maximal spheres on the line

graph (the reconstructed domain). The volume of space that is covered by maximal

spheres from more than one line graph segment is denoted Vd, see Fig. 3.14.

The volumes necessary for these two measures are difficult to compute for domains

13A somewhat similar situation appears at the triple-junction of the cubic Gyroid IPMS which repre-
sents a strictly hyperbolic geometry, see Fig. 5.9. At the triple junction, which corresponds to the only flat
points of the Gyroid, the distance function has a saddle point with Hopf index -2, i.e. three directions of
increasing and decreasing distance function values, respectively. In fact, the directions of decreasing dis-
tance function are almost constant. Even under distortions of the labyrinths, given by the one-parameter
families tG and rG, no minimum of d is created which would lead to a ring of the line graph.

14There are obviously some restrictions on the radii and radius variations of the balls. Mathematically
speaking, the labyrinth shall be one whose bounding surface is a canal surface.

15The tubes certainly overlap in the vicinity of the nodes of line graph. However, they may also overlap
in other cases, e.g. spheres from the two geometrically centered line graphs in a channel with bone-like
cross-section may overlap depending on the proximity and diameter of the two geometric centers.
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two parallel line graph segments

Side view of a channel with two
neighbouring maximal spheres
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Figure 3.14: Different subvolumes defined for the measure assessing representability by a line

graph. (Left) Maximal spheres on “parallel” graph segments may overlap; this is a sign of

bad representation of the domain by a line graph. (Right) Neighbouring spheres on the same

line graph segment always overlap, even if the line graph is a perfect representation of the

domain.

represented as triangulations of the bounding surface. However, they are easy to

compute for voxelised data sets.

Finally, the topological equivalence of the line graph and the domain can measured in

terms of the number of rings in the line graph that can be shrunk to a point. As the

line graph runs through all channels, and has the same number of components as D,

the number of redundant rings is a good measure for the topological equivalence.

3.8 Images of line graph edges on S and watershed partitions

The line graph, and its “dual” graph connecting saddle points to minima, induce a

watershed-like partition of both the domain C and the surface S. A few comments on

this partition, and of the relation between graph segments and their preimages on the

surface S are discussed.

The line graph constructed in this chapter consists contains the maxima of the Eu-

clidean distance map D and lines between them. On any line between a pair of max-

ima there is always at least one saddle point of the D. In this way rings of sequences

of maxima and saddle points are defined. A number of rings of this type may be the

faces of a generalised polygon (with curved egdes and faces). Such a complex always

encloses a minimum of D. It is precisely in this way that the line graph reproduces

the watershed partition of space.

In a similar way, connections from saddle points to minima of D induce a dual parti-

tion where maxima of D are enclosed by generalised polygons that have saddles and

maxima of D as the vertices of their edges. Note that this partition is not necessarily
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one wherer each cell contains a node of the graph. A maximum of D does not need to

be a node of the line graph, or vice versa. See for example the discussion of the Gyroid

labyrinth in chapter 5.

A similar partition, but one dimension lower, is afforded by a network of lines of

steepest ascent (descent) of the MS distance function d on S. The domain boundaryS = �C is segmented into surface patches containing a maximum (minimum) inside

and saddle points and minima (maxima) of d on their bounding curves. This network

of lines of steepest ascent is shown on the Primitive surface in Fig. 5.7.

It is possible, and has been suggested by us [184], to define the line graph of C as the

network of lines of steepest ascent on S projected onto the MS. This network contains

additional segments resulting from saddle points of d that are not saddles of D.

Geometrically, a relation between the line graph defined above and this latter line

graph exists – due to the connection between maxima and saddles of D and d. If

the equivalent paths of the line graph defined in this chapter and the image of the

network of lines of steepest ascent on S are congruent, needs to be assessed carefully.

In principle, the MS transformation may affect the gradient direction, which would

result in a different path followed by the two paths. However, in particular for the

cubic IPMS, no difference between the geometric paths of equivalent segments exist.

Concluding remarks

This chapter has elucidated many of the sensitive issues related to the definition of

a line graph. In contrast to the MS construction, which is conceptually very robust

and unambigiously defined, the definition of a line graph is subject to preference for

topological or geometric representation and personal taste.

We have presented a definition that is clearly biased towards producing a geometri-

cally centered line graph at the expense of homotopy equivalence between the domain

and its line graph.

The computation of it relies strongly on the correct identification of saddles and max-

ima of D. Our method of detection relies on a local criterion, although adapted to

cope with noise. A combination method that incorporates knowledge of the global

combinatorial structure with the local geometric information would be desirable.

For the following chapters on line graphs of infinite periodic minimal surfaces, the

method presented here allows for a reliable and sensitive characterisation of the graph

connectivity and geometry that a topological method could not provide. For the sec-

tion on experimental data, this chapter has set the principle by which we would like
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to assign the line graph to a labyrinth even though its computation on the whole data

set by an automated process without manual inspection is not possible.

With the definition provided we will be able to show that the line graph of many

hyperbolic labyrinths is indeed well defined and a very picturesque model – if not

even a little more.
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Chapter 4

Representations of Infinite Periodic

Minimal Surfaces

This chapter describes the parametrisation of IPMS and the generation of discretised

representations of their asymmetric unit-patches. Its main intention is to present a

practical summary of the methods applied to generate IPMS representations on which

the medial surface analysis can be carried out.

First, the key properties of and history of research into IPMS are summarised. The

Weierstrass parametrisation for minimal surfaces is described, and illustrated with

two specific examples. A catalogue of the Weierstrass functions and symmetry rela-

tions combined with a brief description is given for all IPMS analysed in the subse-

quent chapters 5 and 6.

Second, an algorithm to generate evenly triangulated representations of Fächenstücke

of IPMS is introduced where all triangles are as close to equilateral (and of equal size)

as possible. The approach is to coarsen a very dense but uneven sampling to generate

a coarser but even triangulation. One of the key ideas is to implement a Monte Carlo

method to find the most even triangulation.

4.1 Basic properties of IPMS

We consider infinite periodic minimal surfaces (IPMS) immersed in three dimensional

Euclidean space E3 . These are periodic, with three independent translational lattice

vectors, and have constant vanishing mean curvature. In addition, we also require

them to be embedded, i.e. free of self-intersections.1

1The term minimal is slightly misleading. The condition of vanishing mean curvature is equivalent
to a vanishing derivative of the surface area functional under all infinitesimal normal variations of any
bounded subsets of the surface. A normal variation is a deformation of the surface that can be expressed
as p(u; v) + � h(u; v)N(u; v) where h is a smooth real-valued function. The surface itself, i.e. � = 0, is a
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An IMPS is always the common boundary of two distinct, individually connected

but not simply connected, solid regions that are themselves triply-periodic. These

solid regions are referred to as labyrinths and are defined as the two components of

the complement of the surface in E3 . This property of partitioning space into two

continuous infinite components justifies the term bicontinuous, introduced by Scriven

[189].

In general, the two distinct labyrinths can be different, both geometrically and topo-

logically. A IPMS whose two labyrinths are congruent is called balanced, a name sug-

gested by Fischer and Koch [57]. All IPMS with in-surface rotational axes, including

in particular all those with asymmetric patches bounded by polygons, are balanced.

Because of the translational periodicity, analysis of properties of IPMS can always be

restricted to the unit cell. If the IPMS has extra symmetries, its smallest representa-

tive fraction is even smaller2: Such an asymmetric unit patch is defined as a smallest

surface patch from which any extended fraction of the IPMS can be obtained by appli-

cation of congruence transformations in Euclidean space. The set of operations that

needs to be applied in order to build a translational unit cell from the asymmetric unit

patch is given by the 3D Euclidean space group of the IPMS.

If the surface is not balanced, the assignment of a space group to a IPMS is unambigu-

ous. If the surface is balanced, however, an ambivalence arises: either one considers

the black-and-white space group of the oriented surface or the space group of the non-

oriented surface.

The former treats the two sides of the surface, or the two labyrinths, as different.

Hence it contains no operations that map points within one labyrinth into the other.

An asymmetric unit patch with a given normal orientation leads to a translational unit

cell with a correctly oriented normal field. This is the appropriate space group for any

analysis that involves out-of-surface properties – such as medial surfaces and normal

fields.

On the other hand, the non-oriented space group treats both sides of the surface as

equivalent. It contains operations that exchange the two sides of the surface, and

hence the two labyrinths. For an analysis of purely intrinsic surface properties, such

as Gaussian curvature, this is the appropriate description.

As is the case for all minimal surfaces, any IPMS can be parametrised locally us-

ing the Enneper-Weierstrass representation3 that is attributed to A. Enneper [53] and

K. Weierstraß [215]. Section 4.3 provides the details necessary for the work presented

critical point of the area, but not necessarily a minimum, see e.g. [47, 48].
2Whether a IPMS can exhibit translational symmetry alone is still an open question [91].
3In the following called Weierstrass representation.
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here.

All minimal surface have an important isometry, known as the Bonnet transform, that

is most easily understood in the context of the Weierstrass parametrisation. It consists

in changing the complex phase of three functions, whose real parts are guaranteed

to give the coordinates of a minimal surface, without changing the intrinsic geometric

properties of the surface and hence its minimality. This produces a transformation that

generates a whole surface family for any given minimal surface. In general, this trans-

formation produces self-intersecting minimal surface families, with isolated members

that are free of self-intersections. The typical examples are the family containing the

helicoid and the catenoid, and the IPMS family containing the cubic Primitive, Dia-

mond and Gyroid surfaces.

Two powerful statements about linear asymptotes and plane lines of curvature of minimal

surfaces exist, and have been eminent in the description of IPMS. A linear asymptote

is a surface geodesic that is a straight line. A plane line of curvature is a surface

geodesic that is a planar curve (Def. from [64]). Any straight line embedded in an

IPMS is a two-fold rotation axis, and any plane line of curvature (a planar geodesic) is

a mirror plane of the global minimal surface [185].

4.2 History of and literature on IPMS

This section gives a short historical perspective on the mathematical description, para-

metrisation and discovery of IPMS. For details on the field of minimal surfaces in

general we refer to [160, 45]. References to articles describing the relevance of IPMS

in physical systems is given in chapter 5.

The first description of IPMS dates back to Riemann [174], Schwarz [185] and Neovius

[157] in the late 19th century. Among the surfaces described by Schwarz are the IPMS

now known as the Primitive (P), the Diamond (D), the Hexagonal (H) and the CLP

surfaces. It is less well acknowledged that he has also described some of deforma-

tions of these surfaces, such as the rPD surface family. Neovius, a pupil of Schwarz,

described a surface that is now called Neovius surface or C(P)4. All of these sur-

faces can be obtained by continuation of surface patches that are bounded by either

straight lines or mirror planes. All of them contain an infinite number of straight lines,

hence in-surface two-fold rotation axes, making these surfaces balanced. Neovius’

and Schwarz’ descriptions were based on Weierstrass-Enneper parametrisations of

these surfaces.

4In Schoen’s nomenclature it is the complement of the P surface [183].
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Apart from Steßmann, who made further investigation into IPMS with patches bounded

by four-sided polygons [206], the field of IPMS remained neglected for much of the20th century.

In the 1960s Schoen [183] proposed another 12 surfaces without formal existence proofs,

among them the Gyroid and the I-WP surface. He applied a wealth of mathematical

ideas combined with Plateau-type soap film experiments. The Gyroid was a product

of experiments with shearable plastic models, an experimental realisation of the Bon-

net transform. The Gyroid was the first IPMS without embedded linear asymptotes

or plane lines of curvature. He discovered the I-WP surface, bounded by a four-sided

kaleidoskopic (mirror) cell, by realising that its adjoint surface patch is a Plateau bor-

der problem. He also introduced the concepts of complimentary surfaces (sharing the

same set of straight lines) and labyrinth graphs.5

It is well known that an infinite number of IPMS exist [169].

In conjunction with increasing awareness among material scientists that IPMS and

related surfaces form the basis of structure in many biological, chemical and physical

systems (see the introduction) research into IPMS intensified in the 1980s, with many

important contributions published in physical journals:

Fogden, Hyde, Lidin and others [134, 94, 135, 64, 65] established that the Weierstrass

function of a large class of IPMS is essentially a product of factors (!�!i)�k where !i
are the branch points in the complex plane, i.e. the stereographic projection of the flat

points in the Gauss map. The exponent k is dependent of the topology of the IPMS.

Using this approach, an exhaustive enumeration of the so-called regular class IPMS

was possible [64, 65].

Fischer and Koch [57, 119, 58, 120, 121, 59, 60] present a systematic crystallographic

treatment of IPMS that contain in-surface two-fold rotation axes. Their results and

new surfaces are based on analysis of the relative orientation and position of two-fold

rotation axes in crystallographic space groups.

Karcher found a number of new surfaces using the conjugate surface method and the

concept of handle insertion [112, 113]. This method is, as was Schoen’s method, based

on the realisation that a patch bounded by plain lines of curvature has a �=2-Bonnet

associated patch bounded by straight lines. It is therefore equivalent to a Plateau

problem. Karcher also established, by mathematical proofs, the existence of Schoen’s

surfaces [111].

5Karcher credits Schoen with ”making [IPMS] popular in the natural sciences”. Furthermore, Schoen
filed an application for a patent for some IPMS entitled “Honeycomb Core Structures of Minimal Surface
Tubule Sections”, NASA case no. ERC-10, 363, serial no. 57253, 22. July, 1970
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Brakke’s program Surface Evolver [23] added an important numerical tool to the inves-

tigation of IPMS. It evolves triangulated representations of surfaces towards minimal

energy, for example minimal mean curvature by a gradient descent method. It thus

makes numerical soap film experiments possible.

Analysis of Bonnet associates of known IPMS was carried out by a number of authors

in the 1990s, with the aim of finding analogies of the Gyroid which is a Bonnet rela-

tive of the Primitive and Diamond surfaces. Lidin and Larsson [136] analysed IPMS

of hexagonal symmetry and found one hexagonal gyroid-like surface without linear

asymptotes or plane lines of curvature, later named Lidinoid by Karcher [113]. Lidin

and co-workers [135] found that the I-WP surface does not have any embedded Bon-

net associates, and Fogden [61, 62] obtained the same conclusion for the F-RD and

C(P) surfaces. Oguey and Sadoc [161] presented a more abstract analysis of crystallo-

graphic aspects of the Bonnet transform of IPMS showing that the isometric family of

Bonnet-related minimal surfaces can be realised as a single surface in E 6 . Lidin [133]

analyses point symmetry relations of Bonnet associates. All of these works are based

on Weierstrass-Enneper representations of the respective surfaces.

Fogden et al. [63] and Fogden and Hyde [66] analysed one-parameter families of (em-

bedded) IPMS, including rhombohedral and tetragonal deformations of the gyroid

and pathsways between the cubic Primitive, Gyroid and Diamond surfaces, again

based on the Weierstrass representation.

Fogden and Hyde [66] provide details of the expression of the Weierstrass integrals

as elliptic integrals for rhombohedral and tetragonal distortions of the Gyroid, and

Cvijović and Klinowski [36, 37, 38] give a similar analysis for a number of known

IPMS.

Minimal surfaces are not the only hyperbolic and periodic space partitions. Implicit

parametrisations as level-sets of sums over Fourier modes [213, 212, 217] provide ease

of use and a wide range of surface families and topologies. Also there are good ap-

proximations of IPMS of this type, that are mathematically easier to handle than the

Weierstrass-equations. Other classes include constant mean-curvature surfaces [84].

4.3 Weierstrass parametrisation of IPMS

The Weierstrass parametrisation is a parametrisation of a minimal surface S from the

complex plane C into E 3 . The Euclidean coordinates are given as line integrals in the

complex plane C . It is a local parametrisation that maps simply connected regions of
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and with the Riemann surface of the integrand as domain of integration, it represents

a global parametrisation of S .

The Weierstrass parametrisation is attributed to A. Enneper [53] and K. Weierstraß

[215]. It is a subject of classical minimal surface theory. Comprehensive accounts of

the Weierstrass-Enneper representation are given in [160, 45, 203].

The strength of the Weierstrass parametrisation is due to the following theorem (see

e.g. [160], paragraph 156): The embedding of all minimal surfaces in E3 can be para-

metrised with a non-vanishing analytic R(!), called Weierstrass function, viax(!) = x0 + Re

�e{ � Z !!0 (1� !02)R(!0)�y(!) = y0 + Re

�e{ � Z !!0 {(1 + !02)R(!0)� (4.1)z(!) = z0 + Re

�e{ � Z !!0 2!0R(!0)�
The angle � is called the Bonnet angle.

The Weierstrass function, R(!), completely determines all differential geometric prop-

erties of the surface S. The first and second fundamental forms, the Gaussian curva-

ture and the metric are all given as simple expressions in R(!) – and are independent

of the Bonnet angle �. In particular, the line element ds on the surface is given byds = (1 + j!j2) jR(!)j jd!j: (4.2)

Note that it diverges at the poles of R(!).
The essential reason why the Weierstrass parametrisation is, a priori, only a local one

becomes apparent from consideration of its inverse:

The Weierstrass parametrisation is the inverse of the composition of two simple maps

from the surface onto the complex plane. This composition is given by � Æ � where �
is the stereographic projection and � the Gauss map. The Gauss map maps a point on

the Surface S onto its normal vector, pictured as its endpoint lying on the unit sphereS2, � : S ! S2; p 7! N(p): (4.3)
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Figure 4.1: The Weierstrass parametrisation as the inverse of Gauss map and stereographic

projection: (Left) A translational cubic unit cell of the I-WP surface in E3 . One kaleidoscopic

patch (from which the translational unit cell can be reconstructed by successive mirror inflec-

tions) is colored white and the normals at its four corner points A, B, C and D are indicated

by small arrows. The lines on the surface indicate mirror planes. Flat points are marked with

black spheres. (Middle) Gauss map of the kaleidoscopic patch on the unit sphere S2 together

with the great-arc circles bounding it. The equatorial plane is the complex plane C . The thin

black line in the first quadrant – through the (0; 0; 1) and a point p on the sphere – illustrates

how the stereographic projection maps p onto C . (Right) The kaleidoscopic patch after stere-

ographic projection in the complex plane C . The great circle arcs on S2 become circles and

straight lines in C . The small black dots indicate the location of the six branch points which

are images of the flat points under � Æ �.

The second is the stereographic projection, that maps a point on the unit sphere onto

the complex plane. A point p 2 S2 maps onto the intersection of the ray emanating

from the north pole that passes through p with the equatorial plane, considered as the

complex plane C� : S2 ! C ; p = (x; y; z) 7! x=(1 � z) + { y=(1 � z) (4.4)

Fig. 4.1 illustrates this composition for the cubic I-WP surface.

The Gauss map transforms the translational unit cell onto the unit sphere, but is not

a bijection (a one-to-one correspondence). In the I-WP example, for a point q on the

unit sphere S2 that does not correspond to a flatpoint, there are three distinct pointspi 2 S with i = 0; 1; 2 with �(pi) = q. If one wanted to make the Gauss map bijective,

one would thus have to map S onto a triple covering of the unit sphere.

Plane lines of curvature and linear asymptotes in S (both of which are geodesics in
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sheet 1
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Figure 4.2: (Left) Three points p1, p2 and p3 on the primitive translational unit cell of the I-

WP surface with identical surface normal directions. A translational symmetry of the surface

is (1/2, 1/2, 1/2) which transforms A1 into A2. This transformation demonstrates why the

conventional cubic unit cell is not a primitive translational unit cell. (Right) Sketch of the

Riemann surface of the cubic root function. It consists in 3 copies of the complex plane, sheets

1–3, that are sliced along the negative real axis. They are connected to each other as indicated

by the dashed line.S) map onto great-circle arcs on the unit sphere6. All in-surface symmetries are pre-

served (excluding e.g. inversion in E3 in a point that is not on the surface).

Stereographic projection then maps the unit sphere onto the complex plane, shown on

the right. This map is a bijection – the north pole maps to complex infinity. Great-circle

arcs map onto circles (or straight lines through the origin). Hence, the kaleidoskopic

patch from S maps onto a subset of C bounded by rays through the origin and circular

arcs.

This example shows that the compositions of maps from the surface onto the complex

plane is not bijective. This can, conceptually, be remedied by mapping the surface

onto a multi-sheeted Riemann surface of R over C (their number corresponds to the

number of covers of the sphere). Taking the Riemann surface as domain of integration

for the Weierstrass parametrisation, the parametrisation can be extended to a global

one. See Fig. 4.2 for an illustration.

The concept of Riemann surfaces is a general geometric construction in analytic func-

tion theory to deal with multi-valued inverses of analytic functions, such as the square

6For plane lines of curvature this result follows immediately from the fact that all normals along the
plane line of curvature are contained in a plane. That plane has to cut the unit sphere in a great circle.



§4.3 Weierstrass parametrisation of IPMS 79

or cubic root. Essentially, multiple copies, sheets, of the domain of a function f with

multi-valued inverse f�1 are joined, along branch cuts, so that the multiple values off�1(y) are on separate sheets. See e.g. [165] for details on the Riemann surface.

For all examples discussed in this thesis, the Weierstrass function has the common

form R(!) =  nYi=0 (! � !i)!�b=(b+1)
(4.5)

where n is the number of branch points (images of the finite flat points under � Æ�), !i
is the i-th branch point and b the order of the branch points7. The order of the branch

points is the number of points in the unit cell with a given normal direction. Within

the restricted class of surfaces considered here, this number is the same for any normal

direction, other than those corresponding to flat points.

The Weierstrass function R(!) has branch cuts, i.e. lines connecting the branch points,

where R(!) is not continuous as a function in C . If R(!) was defined on the Rie-

mann surface, a multiple interconnected covering of the complex plane, these branch

cuts represent the connections between the separate sheets. R(!), and the Weierstrass

parametrisation would be continuous there by virtue of changing to a different sheet.

If one ignores the multi-sheeted nature of the Riemann surface crossing a branch-cut

corresponds to jumping from one of the n points with that exact normal vector to

another one on the surface. Hence, for numerical integration one needs to know the

branch cut structure of the Weierstrass function, and the effect of crossing branch cuts.

Symmetry considerations yield the domain in C that corresponds to an asymmetric

unit patch. The following short description explains the principle (for details see [45]):

First, the Gauss map of a translational unit of the surface is a dense cover of a (small,

integral) number of unit spheres (because the genus minus 1 of the surface, which is

always an integer, corresponds to the number of covers of the sphere). The Gauss

maps of all asymmetric unit patches (differently oriented in space so that together

they form the translational unit) are congruent. They form a tiling of a number of

copies of the unit sphere. If all edges of the asymmetric unit are either plane lines of

curvature or linear asymptotes (mapping onto great arc circles in S2 and onto circles or

rays through the origin in C ) it is clear that the tiles in the complex plane are bounded

by these circles or rays. See [64] for a discussion of many aspects of this tiling problem.

7This form has been established by Fogden and Hyde [64, 65, 61]. Their formulation is more general,
in that different branch points may have different orders. However, all of the surfaces discussed in this
thesis can be parametrised by this simpler formula.
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Figure 4.3: Weierstrass integration of asymmetric unit patch for the rPD surface family. (left)

Complex plane with color mapping of sign of real and imaginary part of g = ! (!3�!30) (!3+!�30 ). Branch cuts are the boundary between darkest gray (Re(g) < 0 and Im(g) < 0) and

white (Re(g) < 0 and Im(g) � 0), in particular passing through the asymmetric patch ending

at point 1.

In general, the tiles have to be chosen such that upon application of all symmetries the

entire Riemann surface is covered exactly once.

4.4 Numerical integration

To obtain an asymmetric unit patch of a IPMS, a grid of points on the corresponding

domain in the complex plane is created. Then each of these points is integrated to give

a point on the surface. The difficulties in this approach arise from the branch cuts ofR – that may cross the asymmetric unit patch. The branch points themselves are not a

major problem as they are integrable singularities.

The actual numerical integration only requires standard techniques from numerical

analysis. It is conveniently carried out using e.g. the NIntegrate command of the Math-

ematica software package [218]. It transforms the contour integrals to ordinary inte-

grals of a single variable by choosing a particular parametrisation of the contour8. It

then uses an adaptive Gaussian integration scheme with error estimation based on

evaluation at Kronrod points (see e.g. ref. [40]).

8Conveniently this parametrisation can be influenced by giving specific intermediate path points.
This is helpful when avoiding branch cuts and branch points.
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We are illustrating the problems associated with branch cuts using the rPD surface

(with r0 < 1) as an example. Fig. 4.3 shows both the domain of integration together

with a set of sample points and the resulting asymmetric unit patch in E3 . All branch

points are of order 1, leading to a double-sheeted Riemann surface of the Weierstrass

function R(!; !0) = [! (!3 � !30) (!3 + !�30 )℄�1=2 (4.6)

Branch cuts of R are all points in C where the polynomial g(!; !0) = ! (!3�!30) (!3+!�30 ) is real and negative. An easy way to visualise them is to color the complex plane

according to the sign of the real and imaginary part of the Weierstrass function, as in

Fig. 4.3. The branch cuts are then easily identified as the boundaries between regions

of Re(g) < 0; Im(g) � 0 (white in Fig. 4.3) and Re(g) < 0; Im(g) < 0 (dark gray).

A line integral along a path that does not cross any branch cuts is path independent.

This is guaranteed by Cauchy’s integral theorem that a contour integral along a closed

path C in a simply connected region R � C over a function f(z) that is analytic inR vanishes (see e.g. [165]). This means that we can choose an integration path that

avoids the vicinity of branch points unless the end point is close to a singularity. For

the rPD domain we choose e.g. integration along two straight segments from 0 to0:5 exp({ 3=4�) for all white points, i.e. for all points that lie on the same branch.

Path integrals along a path that crosses branch cuts are problematic, e.g. the paths to

all white points ! in Fig. 4.3. The problem is not the numerical problem of handling

the integration over a discontinuity. That problem may be well-defined, and could be

overcome by avoiding the branch cut by changing the integration path, for example

from 0 to { and from { to !.

The fundamental problem is that the analytic continuation of R(z) across the branch

cut (and that is the one yielding continuous paths on the minimal surface) is defined

on the second branch of the Riemann surface. Crossing the branch cut should corre-

spond to changing to the second branch. The branch structure of the rPD Weierstrass

function is inherited from the square root function. Its two branches are defined by

the two distinct values for the square root of a complex number z = r exp({ �)z1=2 = r1=2 e{ �0=2 or z1=2 = r1=2 e{ (�0+2�)=2 (4.7)

with �0 2 (��=2; �=2℄. The first solution is often called the principal branch. With-

out jumping to the other sheet (but changing the path to avoid the branch cut), the

points on the other side of the branch cut do not continously connect, but form a sep-
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arate patch (on the IPMS), but not on the asymmetric unit patch (for the rPD, they are

inverted in the flat point in E3 ).

Indeed, in the example, we can explicitly implement the change of the branch by

redefining the square root function to bepz = pr e{ � = ( r1=2 e{ (�0+2�)=2 = e{ �pz if Im(z) > 0 and Re(z) < 0r1=2 e{ �0=2 = pz otherwise
(4.8)

for the points within the domain of the asymmetric unit patch, where �0 is the same

as above.

The difficulty in this approach is the identification of branch lines or, in other words,

the assignment of points in the domain of the unit patch to their branch. A systematic

approach is difficult, but the visual analysis suggested here works well for the cases

considered in this thesis.

Distortion of the sample point grid

A less fundamental but practically very important issue is the choice of sample points

in C . It is clear from the distortion of the length element, eq. (4.2), that the Weier-

strass parametrisation is not isometric; distances are not preserved. In particular, this

distortion becomes infinite at the poles.

This unisometry leads to considerable distortion of the sample point grid in the com-

plex plane C upon integration. In Fig. 4.3 the points in the complex plane ri exp({ �i)
are chosen on concentric circles around the origin with constant radial and angular

intervals �r and ��. The distortion near the flat points 0 and 1 is clearly visible.

In many instances one wants to obtain an evenly spaced sampling on the surface, pos-

sibly even with a specific topology of the triangulation (e.g. a rectangular mesh). It is

difficult to determine the corresponding sample points in C , because of the distortion

of point-point distances and because of the change in shape of the boundary polygon.

In the rPD case a triangle is mapped onto a four-edge polygon.

It is, however, easy to generate a triangulation where the distance between nearest

points is always smaller than a parameter Æ. This is achieved, for example, by recur-

sively and locally subdividing an initial coarse grid until it fulfills the requirement. It

is also easy to generate a boundary polygon of the asymmetric unit patch with that

property. In that case it is important to include poles on edges as vertices of the dis-
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cretisation in order to properly resolve the resulting corners of the patch (e.g. point 1

in Fig. 4.3).

In Section 4.6 we describe an algorithm that coarsens a dense triangulation of this type

to give a triangulation of almost equilateral triangles.

Symmetry requirements for the sample points

A further requirement for the sample points on the boundary of the asymmetric unit

patch is that they comply with the symmetry group of the surface. Edges (or one

edge) of the boundary polygon of the asymmetric unit patch that, upon application of

one of the operations of the symmetry group, are mapped onto each other (or itself),

are required to have matching discretisations.

This is trivially fulfilled for any discretisation of edges that are plane lines of curvature

(mirror planes) or linear asymptotes (in-surface two-fold rotation axes).

A non-trivial example are the edges (2,3) and (3,4). In Fig. 4.3: an out of surface two-

fold rotation maps (2,3) onto (4,3). The sample points for these two edges have to be

chosen such that they match exactly upon application of that two-fold rotation. In this

particular case, the discretisation shown does fulfill this requirement.

4.5 Parametrisations of specific IPMS

This section provides details of all those IPMS and their parametrisations that are

analysed in the subsequent chapters. The results are summarised in Tables 4.2, 4.3

and 4.1, and Figure 4.4 that list symmetry positions. flat and corner points of the

asymmetric unit patches of the Primitive, Gyroid, Diamond, I-WP, rG, rPD, tD and tG

surfaces.

4.5.1 The cubic Primitive, Diamond and Gyroid surfaces

The most well-known and best studied IPMS are without a doubt the cubic Primitive,

Diamond and Gyroid surfaces. Their common Weierstrass function isR(!) = �1� 14!4 + !8��1=2 : (4.9)

The three different surfaces are distinguished by their Bonnet angles of 0, �=2 and1= tan(K 0=K) � 38:0147740o for the Diamond, Primitive and Gyroid surface, respec-

tively. K = K(1=2) is the complete elliptic integral of the first kind.
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Figure 4.4: Domains of integration and location of branch cuts for the IPMS asymmetric unit

patches discussed in section 4.5. Branch cuts are boundaries between white and the darkest

gray. The big black points are branch points. Thick black lines are boundaries of the domain

of integration for the asymmetric unit patch of the non-oriented space group, dashed lines of

the oriented one.

For the Primitive surface, a domain of integration for the non-oriented space group

is bounded by the circle of radius
p2 at 1=p2 (�1 � {), the real axis and the diagonal

through the first quadrant, the polygon (0–2–3–0) in Fig. 4.4. For the oriented space

group the domain is twice as large, and can be the chosen to be the same as for the

non-oriented space group plus its image under reflection in the real axis, (0–1–2–3–0).

For the Diamond surface, the domain of integration for the non-oriented space group

is the same as for the Primitive surface. The domain for the non-oriented domain

is more conveniently chosen to be bounded by polygon (0–2–3–4–0) as this yields a

Flächenstück that is contained in the crystallographic unit volume.

For the Gyroid, the domain for the non-oriented space group has to be chosen twice

as large as for the Primitive and Diamond surfaces. It can be chosen to be bounded
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non-oriented spacegroup oriented spacegroup

Index ! 2 C Cryst. coord. Sym Wyck Cryst. coord Sym Wyck

Primitive Im3m a=2.15652 Pm3m a’=a=2.15652x1 = 0:3249, y2 = 0:1751, x2 = 1=4, y2 = 1=4, !1(�) = �1=p2 (1 + {) +p2e{(�=6+�)0 0 (1/2, 1/4, 0) 4m2 12d (1/2, y2 , 0) mm2 12h0! 2 [0; (p3� 1)=p2℄ (x, 1/4, x+1/2) 2 48i (x, 1/4, x+1/2) – –2 (p3 � 1)=p2 (1/4, 1/4, 1/4) 3m 8c (x2 , x2 , x2) 3m 8g2! 3 !1([0; �=6℄) (x, x, z) m 48k (x, x, z) m 24m3 (p2 � 1) e{ �=4 (x1, x1 , 0) mm2 24h (x1 , x1 , 0) mm2 12i0! 3 [0;p2� 1℄ e{ �=4 (x, y, 0) m 48j (x, y, 0) m 24k1 (p2 � 1) e�{ �=4 (1/2, y2 , y2) mm2 24h (1/2, y2 , y2) mm2 12j2! 1 [!1([0; �=6℄)℄� (x, y, y) m 48k (x, y, y) m 24m0! 1 [0;p2� 1℄ e{ �=4 (1/2, y, z) m 48k (1/2, y, z) m 24l

Diamond Pn3m (origin at 43m) a=1.68575 Fd3m (origin at 43m) a’=2a = 3.37150!1 = (p3� 1)=p2, !1(�) = �1=p2 (1 + {) +p2e{(�=6+�)0 0 (1/2, 1/2, 0) 42m 6d (1/4, 1/4, 0) 2mm 48f0! 2 [0; !1℄ (x, x, z) m 24k (x, x, z) m 96g2 !1 (1/4, 1/4, -1/4) 3m 4c (1/8, 1/8, -1/8) 3m 32e2! 3 !1 e{ [0;�=2℄ (x, 1/4, x-1/2) 2 24j (x+3/8, 1/8, x+1/8) – –3 (p2 � 1) e{ �=4 (1/2, 1/4, 0) 222 12f (1/4, 1/8, 0) 2 96h0! 3 [0; (p2� 1)℄ e{ �=4 (1/2, y, 0) 2 24h (1/4, y, 0) – –4 { !1 (3/4, 1/4, 1/4) 3m 4c (3/8, 1/8, 1/8) 3m 32e0! 4 [0; { !1℄ (x+1/2, -x+1/2, z) m 24k (x+1/2, -x, z) m 96g

Gyroid Ia3d a=2.65624 I4132 a=2.65624x1=0.33750 0 (0, 3/4, 1/8) 4 24d (0, 3/4, 1/4) 2 24f2 !1 (0, 1/2, 0) 3 16a (0, 1/2, 0) 3 16e3 (p2 � 1) e{ �=4 (-1/4+x1, 5/8, 1/2-x1) 2 48g (-1/4+x1 , 5/8, 1/2-x1) 2 24h4 { !1 (1/4, 3/4, 1/4) 3 16a (1/4, 3/4, 1/4) 3 16e5 (p2 � 1) e{ 3�=4 (1/8, 1/2+x1 , -1/4+x1) 2 48g (1/8, 1/2+x1 , -1/4+x1) 2 24h6 �!1 (0, 1, 0) 3 16a (0, 1, 0) 3 16e

I-WP – Im3m a = 3:15491x0=0:2748, z0=0:1667, y0 = 1=2 � x0 , x1 = 0:1374, !2(�) = 1 +p2e{ �0 0 – – – (x0 , x0 , 0) mm2 24h0! 1 [0; {℄ – – – (x, x, z) m 48k1 { – – – (1/2, 1/2, z0) 4mm 12e1! 2 !2([�=2; 3�=4℄) – – – (1/2, y, z) m 48j2 1 +p2{ – – – (1/2, y0 , y0) mm2 24h3 1=3 +p2=3{ – – – (1/2-x1 , 1/4, x1 ) 2 48i

Table 4.1: Symmetry of the edges and corners of the asymmetric unit patches of the cubic

Primitive, Diamond, Gyroid and I-WP surfaces. The lattice constants refer to the parameteri-

sations as in eqs. (4.9) and (4.13). As the boundary of the asymmetric unit patch of the Gyroid

consists in points in general position (except for the vertices and the points 3 and 5) its edges

are not explicitely listed here. The symbol � denotes complex conjugation.
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by the polygon (0–2–3–4–0). The patch for the oriented space group is again twice as

large, that is the polygon (0–2–3–4–5–6–0).

4.5.2 The rhombohedral rPD surface family

The rPD surface family is a one-parameter family of IPMS of rhombohedral symme-

try. For two singular values of the free parameter it corresponds to the cubic Diamond

and Primitive surface, respectively. It hence represents a continuous pathway of em-

bedded minimal surfaces between these two cubic surfaces.

It is the minimal surface spanning two parallel, horizontal equilateral triangles at dis-

tance 
 apart that are rotated by 60o around the vertical axis. By repeated two-fold

rotations about the straight lines in E 3 the rPD is generated from that catenoidal sur-

face element [119].

Fogden and Hyde describe that “rhombohedral distortions [the rPD surface] of the D

and P surfaces are obtained by pulling along the z-axis [...] (in the [111℄ direction),

stretching the screwed triangular catenoidal units [...]”. By “stretching” they mean an

anisotropic scaling (stretching) of the polygonal boundary of the catenoidal units and

subsequent evaluation of the correct minimal surface for that boundary polygon. A

stretch of the minimal surface patch, in the sense that the three point coordinates are

simply multiplied with different factors, does not yield a minimal surface – H = 0 is

trivially violated.

The rPD Weierstrass function is given by eq. (4.6) [185, 65, 66]. It possesses 8 first order

branch points at 0,1 and r0 exp({ �i) and 1=r0 exp({ (�i + �=3)) with �i=0; 2�=3; 4�=3
(see Fig. 4.3). Changing the real parameter r0 2 [0;1℄ gives a continuous family of

embedded IPMS where r0 = 1=p2 gives the cubic Diamond surface and r0 = p2 the

cubic Primitive surface.

The space group of the non-oriented and oriented rPD surface is both R3m, but the

lattice parameter 
 is doubled in the latter case. Table 4.2 indicates the relation between

the points on the complex plane and the symmetry sites in E3 .

The domain of the asymmetric unit patch is a �=3 wedge inside the unit circle centered

at 0. The angles �=3, �, �=2 and �=2 at the points 0, 1, 2, 3, and 4 (in Fig. 4.3) in the

complex plane lead to an asymmetric patch with angles �=6, �=2, �=2 and �=2 at the

respective points. The edge (0,1) is a plane line of curvature, (1,2) a linear asymptote,

(2,4) neither of them but with a two-fold rotational axis in surface normal direction at

point 3, and finally edge (4,0) is a linear asymptote.

Note that the domain of integration given in reference . [65] yields a Flächenstück
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non-oriented spacegroup oriented spacegroup

Index ! 2 C Cryst. coord. Sym Wyck Cryst. coord Sym Wyck

rG
R3
, origin at 3
, hex. axes, a =a(�0), 
=
(�0) R32, or. 32, hexagonal axes, a’=a, c’=cz1=-1/4,x1=1/6, z2=-1/12, x2=1/6, y2=1/3, z3=-1/2

0 0 (0,0,0) 3: 6b (0,0,z1) 3: 6c

1 r0 e{!0 (-1/6, 1/6, 1/6) 1 18d (-x1,x1,z2) 1 18f

2 e{!0 variable 1 36f variable 1 18f

3 e{� 16� (0, y, 1/4) :2 18e (0,y,0) :2 9d

4 e{( 14� 16 )� (x, 1/3, 1/12) :2 18e (x, 1/3, -1/6) :2 9e

5 e{(!0+ 23�) variable 1 36f variable 1 18f

6 r0 e{(!0+ 23�) (1/6, 1/3, -1/6) 1 18d (x2, y2 , z3) 1 18f

rPD R3m (a,c), hexagonal axes R3m, hex. axes, a0 = a, 
0 = 2

0 0 (0, 0, 0) 3m 3a (2/3,1/3,0.16) 3m 6c[0; r0℄ e{ 2�=3 (x, 2x, z) m 18h (2x,x,z) m 18h

1 r0 e{ 2�=3 (1/6, 1/3, 1/3) 2=m 9e (-0.3,-0.16,-0.16) m 18h[r0; 1℄ e{ 2�=3 (-1/3+x, 1/3, 1/3) 2 18f (0.3,0.3+x,-0.16) 1 36i

2 e{ 2�=3 (-1/3+x, 1/3, 1/3) 2 18f (0.3,0.3+x,-0.16) 1 36i

3 e{ 5�=6 (1/3, 2/3+y, 1/6) 2 18g (0.3,0.3,0) 2 18f

4 �{ (x, x, 0) 2 18f (0.3+x,0.3,0.16) 1 36i[�1; 0℄ { (x, x, 0) 2 18f (0.3+x,0.3,0.16) 1 36i

Table 4.2: Symmetry positions of (some of the) corners, special sites and edges of the asym-

metric unit patches of the rPD and rG IPMS discussed in section 4.5. The notation [a; b℄ e{ �
means r e{ � with r 2 [a; b℄, and similarly r e{ [
;d℄ means r e{ � with � 2 [
; d℄. The coordinates

are crystallographic coordinates, for one of the possible asymmetric unit patches. Space group

notation as in [85]. The indices refer to the points in Fig. 4.3 for the rPD, and in Fig. 4.4 for the

rG.

twice as large. Their Flächenstück is bounded by linear asymptotes or plane lines of

curvature on all four sides. It is, however, not asymmetric.

The domain as indicated here, and in similar form in [66], also does not extend to

infinity. This has obvious advantages for the numerical integration and discretisation

of the grid. The disadvantage is that a two ostensibly distinct cases arise, r0 > 1
and r0 � 1, distinguished by either a flat point on the real axis or one on the e2=3�{
ray being within the domain. Alternatively, the domain could be chosen to be the�=6 wedge starting at e2=3�{ and extending to complex infinity. In this case the two

cases could be treated in a uniform manner. Also, the Fächenstück is then completely

contained within the triangular prism that constitutes the asymmetric unit of the R3m
space group.

The rPD family is self-adjoint, i.e. its members with r0 > 1 have �=2 Bonnet-associates

among the members with r0 < 1. In particular, the cubic Primitive surface is the

adjoint of the cubic Diamond surface.

Details of the integration are discussed in section 4.3.
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4.5.3 The rhombohedral rG surface family

The rG surface is a one-parameter family of surfaces that contains the cubic Gyroid

as one of its members. Its description is due to Fogden et al. [63, 66]. As the cubic

Gyroid it does not contain any straight lines or mirror planes. It is of rhombohedral

symmetry, i.e. if compared with the cubic case it only retains the three-fold and one

two-fold rotation9. It is balanced, and the symmetry operation exchanging its two

sides is a three-fold inversion rotation 3.

The Weierstrass function for the rG is given byR(!; !0) = �! (!3 � !30) (!3 + !�30 )��1=2 (4.10)

where !0 = r0 exp({�0). Constraints for the lock-in of the surface into the R3
 space

group eliminate two of the three, a priori free, parameters r0, �0 and �. If, as in [66],

one chooses �0 as the free parameter � and r0 follow as the (numerical) solution of two

transcendental equations (see the appendix of [66]). The free parameter �0 is restricted

to the interval��=2 � �0 � 0. Tab. 4.2 lists coordinates and symmetries of the corners

of the asymmetric unit patch.

Note that the rG Weierstrass function is identical to that of the rPD surface, eq. 4.6.

The two surface families are distinguished by different relations between the Bonnet

angle � and !0. However, the end point of the rG surface with !0 on the real axis

corresponds to a member of the rPD surface.

The space group of the non-oriented rG surface is R3
, and the space group of the ori-

ented rG surface R32. for both space groups, crystallographic hexagonal coordinatesfX;Y;Zg and Euclidean coordinates fx; y; zg are related by the equationfx; y; zg = (�p3 a2 (X � Y ); �a2 (X + Y ); 
 Z) : (4.11)

Note though that the origin is chosen differently for the two space groups (related by

a translation in 
 direction). While the origin of the non-oriented rG surface in theR3
 space group (No. 167, hexagonal axes) is on the surface at the flat points with

vertical normals (i.e. in c-direction), the origin of the oriented rG surface in the R32
space group (No. 155, hexagonal axes) is inside the labyrinth channels, at one of the

types of line graph nodes (the big yellow spheres on the medial surface in Fig. 6.7).

9It retains one two-fold axis (18e) in the space group R3
 of the non-oriented surface that includes
interchanges of the two sides of the surface. The space groupR32 of the oriented surface has two distinct
two-fold axes.
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The (non-oriented) asymmetric unit patch is a 2�=3 wedge between the rays r exp(��0
and r exp(� (�0+2�=3 contained within the unit circle. Branch cuts cross the asymmet-

ric unit patch, and change with varying �0, making the numerical integration difficult.

A redefinition of the square root function as in eq. (4.8), or the fact that points on the

different branches are related by an inversion in the origin solves this problem.

The boundary of the coordinate grid needs to be symmetric with respect to the two-

fold rotation axes as exp(�{�=6), exp({�=6) and { – depending on which of this actually

lie within the domain of the asymmetric unit patch.

4.5.4 The tetragonal tD and tP surface families

The surface families tD and tP arise as tetragonal distortions, i.e. retaining 4-fold rota-

tional symmetry, of the cubic Diamond and Primitive surfaces. These one-parameter

families are adjoints of each other.

The parametrisations of tD and tP are well-known [185, 36, 65, 66]. The Weierstrass

function is given by R(!; !0) = e{ � [(!4 � !40)(!4 � !�40 )℄�1=2 (4.12)

where !0 = r0 2 [0; 1℄. For the tD family the Bonnet angle is � = 0, for the tP family� = �=2.

The symmetry group of the non-oriented tD family is P42=nnm, and that of the ori-

ented surface is I41=amd. A portion of the tD surface in P42=nnm orientation (origin

choice 1 in space group No. 134 in [85]) is transformed into I41=amd orientation (ori-

gin choice 1 in space group No. 141) by the following steps: (1) mirror inflection in

the (010) plane10, (2) rotation in clockwise sense around the [001] axis by 5�=411, and

(3) translation by 
=2 (referring to P42=nnm) along the [00-1] axis. The lattice param-

eters in the different space groups are related by a(I41=amd) = p2 a(P42=nnm) and
(I41=amd) = 2 
(P42=nnm).
For r0 = p2�p3 � 0:517638 the tD [tP] surface is congruent to the cubic Diamond

[Primitive] surface.

Numerical integration is straightforward. As all edges of the asymmetric unit patch

are either mirror planes or in-surface two-fold rotation axes any discretisation will

10Note that this plane is not a mirror plane of the symmetry group.
11�=4 rotation is sufficient to map the surfaces onto each other. The additional � rotation ensures

that the conventional asymmetric unit cell of P42=nnm is rotated into a subvolume of the I41=amd
asymmetric unit cell
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non-oriented spacegroup oriented spacegroup

Index ! 2 C Cryst. coord. Sym Wyck Cryst. coord Sym Wyck

tD
P42=nnn, origin at 42m,a = a(r0), 
 = 
(r0) I41=amd, origin at 4m2, a0 =p2 a; 
0 = p2 
z1 = �1=4, y1 = 1=4, z2 = �1=8, y2 = 1=4, x3 = �1=4, y3 = 1=4, z3 = �3=8, x4 = �1=4, z4 = �3=80 0 (0, 0, 0) 42m 2a (0,0,z1) 2mm. 8e0! 1 [0; r0℄ (x,x,z) ..m 8m (0,x,y) .m. 16h1 r0 (1/4, 1/4, 1/4) ::2=m 4f (0,y1 ,z2) .m. 16h1! 2 [r0; 1℄ (x, x+1/2, 1/4) ..2 8k (x, 1/4, -1/8) – 32i2 1 (0, 1/2, 1/4) 2:22 4d (1/4, y2 , -1/8) .2. 16f2! 3 e{ [0;��=4℄ (0, 1/2, z) 2.. 8h (1/4, 1/4, z) – 32i3 e�{ �=4 (0, 1/2, 0) 222: 4c (x3+1/2, -x3, -1/4) ..2 16g3! 0 [0; 1℄ e�{ �=4 (0, y, 0) .2. 8i (x, x, -1/4) – 32i3! 4 e{ [��=4;��=2℄ (1/4, 1/4, z) – 32i4 e�{ �=2 (-x4 , 1/4, -3/8) .2. 16f4! 5 [1; r0℄ e�{ �=2 (x4 , y, z4) – 32i5 r0 e�{ �=2 (0, y3, z3) .m. 16h5! 0 [0; 1℄ e�{ �=2 (x, 0, z) .m. 16h

tG
I41=a
d, origin at 4
21,a=a(�0), 
=
(�0) I4122, origin at 222,

a’=a, c’=cy0 = y0(�0), z0 = �1=4, x2=0, y2=1/4, z2=-1/8, x4=-1/4, y4=0, z4=-3/80 0 (0, 0, 0) 4:: 8a (0,0,z0) 2.. 8c1 r0 e{ �0 (0, 1/4, 1/8) 1 16c (x2 , y2, z2) – 16g2 e{ �0 (x,y,z) – 32g (x,y,z) – 16gA e�{ �=4 (-x1+1/2, x1+1/2, 1/4) ..2 16f (-x3 , x3, 0) ..2 8eB 1 (-1/4,�y0+1/2,1/8) .2. 16e (-1/4,�y0 ,-1/8) .2. 8f3 e{ (�0+�=2) (x,y,z) – 32g (x,y,z) – 16g4 r0 e{ (�0+�=2) (-1/4, 0, -1/8) 1 16c (x4 , y4, z4) – 16g

Table 4.3: Symmetry positions of (some of the) corners, special sites and edges of the asym-

metric unit patches of the tetragonal tG and tD surfaces. Point indices refer to the points in

Fig. 4.4.

continue seamlessly across the asymmetric patches.

4.5.5 The tetragonal distortion tG of the Gyroid

The tG surface is a one-parameter family of surfaces that contains the cubic Gyroid. It

is of tetragonal symmetry. It can hence be viewed as a tetragonal distortion of the Gy-

roid, i.e. retaining the vertical four-fold axis but loosing the diagonal three-fold axes.

Its two terminal points are members of the tD and tP families, respectively. Therefore,

together with these two families it offers an alternative pathway of continuous and

embedded IPMS between the three cubic surfaces P, D and G.

Its description is due to Fogden et al. [66, 63].

The Weierstrass function is the same as given in eq. (4.12). The free parameter can be

chosen as �0. The other two, a priori free variables, r0 and the Bonnet angle �, then
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follow as functions of �0 from the symmetry constraints formulated in appendix B of

reference [66].

In order to fit into the space group I41=a
d of the non-oriented tG surface, the asym-

metric unit patch given in the appendix of reference [66] has to be rotated by �=2 such

that y(!0) = a=4 and x(!0) = 0.

The discretisation of the boundary of the asymmetric unit patch has to be compli-

ant with the two-fold symmetry axes (normal to the surface) at exp({�) with � =��=4; 0; �=4 (points A, B and C in the Fig. 4.4 and Tab. 4.3).

The space group of the oriented tG surfaces is I4122. The asymmetric unit patch of

this space group consists of the asymmetric unit patch of the I41=a
d asymmetric unit

patch plus a copy of it after application of the orientation-reversing four-fold inversion

symmetry around the origin (point 0 in the Fig. 4.4 and Tab. 4.3). It is also translated

along the negative z-axis by 
=4. The translational unit-cells of both space groups are

the same, hence also the two lattice parameters a and 
.
The member that is congruent to the cubic Gyroid is '0 = ��=4.

4.5.6 The cubic I-WP surface

The I-WP surface is of cubic symmetry, Im3m, and is not balanced. Figs. 4.1 and 4.2

illustrate the translational unit cell. Among the surfaces discussed here, it is the only

one with branch points of order 2, hence with a three-sheeted Riemann surface.

It was first described by Schoen [183], and its Weierstrass parametrisation has been

discussed in [135, 65, 38]. The name was given by Schoen, “I” for innen-zentriert

(body centered) and “WP” for wrapped-parcel. This is according to his usual naming

convention where the name is composed of two parts describing the symmetry or

shape of the two labyrinth.

We here describe the orientation as in [135].

The asymmetric unit patch is a patch in the first quadrant of the complex plane bounded

by the imaginary axis, the circle centered at 1 of radius
p2 and the ray from the origin

and through 1+ {p2, see Fig. 4.4 (b). The first and second of these arcs are plane lines

of curvature, whereas the third is somewhat arbitrary but contains the out-of-surface

two-fold rotation point at 1=3 + {p2=3.

Many representations in the literature [135, 65, 38] describe the kaleidoskopic patch

(bounded by 4 plane lines of curvatures) that is twice as large. It is the kaleidoscopic

patch that is shown in Fig. 4.2 as it is more easily recognised by the eye. However, it

is not asymmetric.
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The Weierstrass function isR(!) = (!6 � 5!4 � 5!2 + 1)�2=3 (4.13)

and the Bonnet angle is � = 0.

The numerical integration is straightforward as the asymmetric unit patch (or for this

purpose the kaleidoscopic patch) do not contain any branch cuts.

Some care needs to be taken to ensure that the discretisation of the edge from 0 to1 + {p2 displays the two-fold rotational symmetry of the point 1=3 + {p2=3. A sim-

ple discretisation with identical step size on either side does not work. One way is

to generate a discretisation on the straight line in C from 0 to 1=3 + {p2=3 and apply

a composition of inverse stereographic projection, the two-fold rotation and stereo-

graphic projection to these sample points.

4.6 Even triangulations of IPMS

This section describes a method for generating a triangulation of the asymmetric unit

patch S of a IPMS where all triangles are as close as possible to being equilateral and

of identical size (in E 3 .

Generation of such representations of IPMS is necessary in the context of this research

as the medial surface algorithm presented in chapter 2 requires well-sampled input

data. Strictly speaking, it requires an input where the distance between nearest sam-

ple points on the surface is dependent on the medial surface distance at the point.

However, as the analysis presented here is not aimed at resolving features at varying

length scales, a sample with uniform nearest point distance (in E3 ) is sufficient.

The idea is to put a relatively coarse but even triangulation onto a subset of a dense

but uneven set of points sampling an asymmetric unitpatch. In the cases discussed

here, the underlying dense set of points is created by application of the Weierstrass

parametrisation described above.

The algorithm starts from the boundary of the patch and iteratively builds a triangu-

lation with specified approximate edge length r on a subset of the dense but uneven

set of points sampling the asymmetric patch. It consists of three steps:

(1) The boundary polygon of the dense sample is determined and discretised with
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Figure 4.5: Illustration of the algorithm to evenly triangulate patches of IPMS.

point-point distance approximately equal to r. Corners and symmetries12 are pre-

served.

(2) An edge e of the boundary polygon is chosen. The vertex p of the dense triangu-

lation is determined that, together with e, forms the most perfect equilateral triangle.

12I.e. if the symmetry group of the IPMS contains operations that map a part of the boundary polygon
onto a different part of the boundary polygon (or onto the same part in a different orientation) then the
discretisation displays the same symmetries.
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Algorithm EvenTriangulation

Initialise empty set of new vertices : V = ;
Initialise empty set of new triangles : P = ;
/* discretise boundary polygon
Discretised sets Bi with edge length jBij=int(jBij=r) � r
Form closed boundary polygon BP from sets Bi.
Initiate set of boundaries BPS = fBPg
Append points of BP to V .
Remove points p with d(BP; p) < hm from P.
/* build initial triangulation
while BPS 6= ; do

BP = BPS[0]
if BP is triangle then

T = 4(BP[0], BP[1], BP[2])

else if 9 i : VertexAngle(BP[i]) < �
 then
T = 4(BP[i-1], BP[i], BP[i+1])

else
Choose random edge e=(i,i+1) of BP
q = NearestBoundaryIntersectPoint(e)
if d(e; q) < h+ hm then

j = NearestBoundaryVertex(q, e)
T = 4(BP[i], BP[i+1], BP[j])

elsep = CreateIdealEquilateralVertex(e)V = V [ p
T = 4(BP[i], BP[i+1], p)

Append T to P
Remove points p with d(T; p) < hm from P.
Update boundary polygon BP

/* Monte Carlo smoothing
Restore original point set P
for all t in f0.5, 0.2, 0.1, 0.05g

repeat n times
choose random vertex v from V nB
d = MinAdjacentTriangleHeight(v)�F = AverageEdgeLengthFluc()
choose random vertex p from P with jp� vj < dÆF = AverageEdgeLengthFluc(v! p)-�F
if exp[Æf=(t�F )℄ < Random([0,1]) do

replace v with d in P

Figure 4.6: Description of the algorithm to evenly triangulate patches of IPMS.

All vertices that lie ’within’ the obtained triangle T are removed from the dense trian-

gulation, with the exception of p. The triangle T is appended to a list representing the

eventual triangulation. The edge e in the boundary polygon is replaced by the two
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other edges of the triangle T . This process is repeated until the boundary polygon

vanishes, i.e. until the whole patch is triangulated.

(3) A Monte Carlo procedure is used to even out differences in edge length. The

’energy functional’ is given by the square of the average edge length. Repeatedly, a

random point v of the new triangulation and a second random point p of the original

dense triangulation in the vicinity of v are chosen. v is replaced by p according to a

Monte Carlo criterion and only if the move does not produce overlapping triangles.

A property of this algorithm that is most important for our application is the follow-

ing: all vertices of the obtained triangulation are vertices of the initial dense trian-

gulation. The algorithm does not manipulate the coordinates (or any other property,

e.g. normals) of any points; if the original points were exact points on the surface,

then that evidently holds true for all points in the final triangulation. This is an im-

portant difference to surface smoothing algorithms that manipulate the coordinates

of the vertices.

We find that for the surface patches presented in this thesis, application of this al-

gorithm produces a triangulation where the typical square root of the mean square

deviation of the edge length is approximately 0.1 in units of the average edge length.

This is obtained if the initial triangulation if the maximal point point distance in the

underlying dense triangulation is approximately 0.1 of the average edge length of the

final triangulation.

Detailed description of algorithm

The input data consists in a set P of points sampling the surface S � E 3 , a set fBig
of sequences of points representing the boundary of the patch S and a parameter r
specifying the desired average edge length for the final triangulation.

The requirements for the set P are that it is a good sample in the following sense: for

any point q 2 S there is a point p 2 P such that jp � qj < �r where � � 0:1 is a

constant. It is also required that each point pi 2 P has an associated normal directionni that is, approximately, the surface normal direction of S at the point pi.
The set B is required to be a set of sequences fBig of points on the boundary �S ofS that fullfil the same criterion as the point set P plus an additional requirement that

guarantees correct symmetry properties of the patch in the final triangulation:

The boundary �S is subdivided into subsets Ui with the following property: if a sym-

metry operation T : E3 ! E 3 (of the IPMS) maps one of those subsets, say U1, onto
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Beginning and end point of these subsets have to be part of the sequences Bi. More-

over, if T (Ui) = Uj then for all pointsBi[k℄ andBj[k℄ of their discretisations T (Bi[k℄) =Bj[k℄ is required.

The purpose of these conditions on B is to guarantee that the discretised patches yield

a continuous triangulation of the IPMS upon application of the symmetry group –

with vertices and edges on the boundary of one patch seamlessly joining with ver-

tices and edges of the neighbouring patch.

All these requirements are easily fulfilled if B and P are obtained from mathematical

parametrisations, such as the Weierstrass integrals, and if the symmetries of the IPMS

are known.

The pseudo code in Fig. 4.6 and the illustrations in Fig. 4.5 together with the following

clarifications explain the algorithm.

It is necessary to maintain a set of boundary polygons even though there is only one

inital boundary polygon. Addition of a new triangle may therefore split the boundary

polygon into two separate boundary polygons, as in Fig. 4.5 (f).

The distance function (point from edge, point from triangle) used throughout the al-

gorithms denote distance from the geometric entity and not only from its vertices;

e.g. points with d(BP; p) < hm all lie within a cylinder of radius hm around the edges

of BP.

The removal of points d(BP; p) < hm from the dense vertex set P ensures that the

minimal triangle height hm is not exceeded by any of the triangles of the final trian-

gulation.

The vertex angle VertexAngle(BP[i]) is the oriented angle of the boundary polygon at

the vertex i on the inside of BP. A critical angle �
 � �=3 gives the threshold below

which a vertex of BP is considered a sharp corner.

The function NearestBoundaryIntersectPoint(e) provides the nearest point on BP (in gen-

eral not one of its vertices) in perpendicular direction from the edge e in the following
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sense, see Fig. 4.5 (c): All intersection points fqig of the perpendicular bisector plane

of the edge e with BP are computed (There may be several if BP is not convex). Out of

these qi the nearest one q is the one that is minimises the distance d(e; qi) from the edge

e and is in direction ni� eij from the edge e, where n(i) is the surface point normal of

the vertex BP[i].

If the distance d(e; q) from this nearest intersection point to the center of the edge e
is smaller than the desired triangle height

p2 r plus the minimal triangle height hm
required then the the third vertex of the triangle adjacent to e should not be a new

point inside the patch but rather the nearest point on BP. The function NearestBound-

aryIntersectPoint(q, e) then finds the nearest BP vertex to q that is not one of the two

vertices of the original edge e.

CreateIdealEquilateralVertex(e) creates a point p 2 E 3 approximately on S such that the4(i; p; i+1) is of triangle height
p2 r. The point p is at (pi+pi+1)=2+p2 r (n�e)=jn�ej.n is the edge normal, i.e. the average of the surface normals of the two edge vertices,

and e the edge directional vector. p is approximately on S depending on the accuracy

of the surface normals and the triangle length r compared to the curvature.

The update of the boundary polygon BP depends on what type of triangle has been

added: If BP was a single triangle, then BP vanishes altogether. If the added triangle

fills in a sharp corner (i-1, i, i+1) of BP then the edges (i-1, i) and (i, i+1) are replaced by

a single edge (i-1, i+1). If the new triangle is the old edge e=(i,i+1) of BP plus a newly

added point p then the edge (i, i+1) in BP is replaced by two edges (i,p) and (p,i+1),

see Fig. 4.5 (d). If the new triangle is the old edge e=(i,i+1) plus a furter vertex p of

BP then, again, the edge (i, i+1) in BP is replaced by two edges (i,p) and (p,i+1). Fur-

thermore, BP is split up into two polygons at the vertex p that are both single closed

loops, see Fig. 4.5 (f).

The triangles obtained by application of this algorithm to this point are nearly equi-

lateral if the third vertex is from generation of a vertex by CreateIdealEquilateralVertex.

The other steps do not create equilateral triangles – “they fill in where no perfect tri-

angle can be created”. The idea is to smooth out these irregularities via a Monte Carlo

approach, combined with an annealing idea.

A measure for the deviations from evenness of the triangulation is provided by the

fluctuations of the edge length of all triangles. This motivates the use of this measure



98 Representations of Infinite Periodic Minimal Surfaces

as an ’energy functional’ H(T ) = X
edges

(l � l)2 (4.14)

where l is the length of the edge and l the average edge length over all edges of the

triangulation.

A standard Monte Carlo (MC) approach is used to find the constellation that min-

imises this functional. An MC step consists in choosing a random vertex p of the

triangulation that is not on the boundary of the patch (This additional condition en-

sures that the symmetry properties are preserved). Then a random vertex of the dense

sample that lies within the set of adjacent triangles is chosen; this is most easily veri-

fied by computing d and ensuring the distance criterion, and ensures that changing p
to v does not generate overlapping triangles.

The normalisation in the exponential factor is provided by the average edge length

multiplied by an artificial temperature factor. AverageEdgeLengthFluc gives the square

of the fluctuations of the edge length.



Chapter 5

MS Analysis of cubic IPMS

This chapter discusses MS related properties of the cubic P(rimitive), D(iamond) and

G(yroid) infinite periodic minimal surfaces (IPMS). We describe their geometry and

demonstrate that the commonly accepted line skeletons – the simple cubic, the Dia-

mond and the Y �graph – are geometrically centered. An unexpected result here is

that the three-coordinated nodes of the Gyroid are not at the widest point of its line

graph (saddle points of D), but at the narrowest.

We argue that the degree of variation of the distance function on a IPMS provides a

measure for surface homogeneity, in addition to the more common analysis of curvature

fluctuations. The underlying idea is to extend an infinitesimal tiling of the surface

to a tiling of E3 by infinitesimally narrow but macroscopically long cells. Each of

the E 3 -tiles is the space foliated by a surface tile under transport in normal direction

until it collapses on the MS. The less these E3 -tiles vary in length or tilt, the more

homogeneous the surface.

We show that the G surface is, in the sense of this measure and at least among these

three surfaces, the most homogeneous (albeit not perfectly homogeneous) space par-

tition with respect to packing properties. The G is followed by the D surface and

then the P surface in terms of global homogeneity. This result is shown to be valid

for three sensible length scale normalisations: isometric surfaces, surface-to-volume

ratio of unity, and the same average distance function value. Consideration of pack-

ing properties is particularly important for these three surface forms because they are

very similar (or identical) in terms of their curvature properties for all three length

scale normalisations presented.

In addition to the three isomorphic P, D and G surfaces of genus 3, data for the cubic

but not balanced I-WP surface of genus 4 is presented. One of its two labyrinths (the

“WP” or wrapped-package network, christened ”nbo” net by O’Keeffee1) turns out to

1See the homepage, http://okeeffe-ws1.la.asu.edu/RCSR/home.htm, of the Reticular Chemistry
Structure Resource.
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be as homogeneous in terms of channel diameter variations as the cubic Gyroid. The

geometry and properties of the WP-labyrinth MS are similar to the Gyroid case, in that

the nodes of the geometrically centered graph (which is shown to be the 4-connected

graph with nodes at cubic face-centers) are saddle points of the Euclidean distance

map D (EDM). This line graph differs from one that has recently been assumed in a

line-defect study in smectic blue phases [43, 44].

The chapter is organised as follows: Section 5.1 defines our notion of surface homo-

geneity based on variations of the MS distance function values over the surface and

gives some details on its computation. Section 5.2 summarises the origin of homo-

geneous surfaces and of the frustration between packing requirements and curvature

homogeneity in liquid crystal self-assembly. Section 5.3 and 5.4 presents homogeneity

data for the four cubic surfaces in the form of distance function histograms. Section

5.5 describes the details of the geometry of the four cubic surfaces, and the resulting

line graphs, followed by some conclusive remarks.

5.1 Homogeneity and packing frustration

Space partitions based on embedded hyperbolic surfaces that divide E 3 into two in-

tertwined labyrinth are inherently inhomogeneous – both as far as intrinsic and ex-

trinsic properties are concerned. The hyperbolic analogue of a sphere or a cylinder,

where all points are identical in curvature and extrinsic properties (such as distance to

the center), does not exist. The degree of homogeneity varies between surfaces, and

measures for curvature inhomogeneity have been suggested and applied to discern

between competing surfaces. In this section we introduce a measure that quantifies

the extrinsic homogeneity by analysing variations of the channel diameter through-

out the labyrinth. With reference to the energetics of mesophase formation we use the

term “packing frustration”.

Homogeneity and variations of Gaussian curvature have been studied by a number

of authors: Hyde introduced the term homogeneity to account for energy differences

between bicontinuous surfactant-water mesostructures of various symmetries mod-

eled by IPMS [98, 95, 99]. Fogden and Hyde [66] have published second moments of

the distribution of Gaussian curvatures of continuous families of IPMS. Schwarz and

Gompper have published distributions of the Gaussian curvature distribution for a

variety of cubic IPMS [188]. The relevance of curvature homogeneity in Helfrich sys-

tems is documented in [88, 95, 187].
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Curvature inhomogeneity is the degree of variation of curvature over the surface. As

a surface in E3 is completely characterised by its mean and Gaussian curvatures H
and K , this reduces to variations of the Gaussian curvature for the case of IPMS (that

by definition have H = 0 everywhere). A surface of constant Gaussian curvature is in

this sense perfectly homogeneous. For positive and vanishing K the sphere and the

cylinder are perfectly homogeneous. However, based on a very general mathemati-

cal result, no surface with negative and constant K can be immersed in E 3 [90, 203].

Hence, a system striving for homogeneous and hyperbolic surface structure is neces-

sarily frustrated.

The issue of global homogeneity is related to curvature inhomogeneity (but not fully

determined by it). Global homogeneity is a measure of the homogeneity of the space

tiling induced by a surface: We invoke the idea of a tiling of space by small volume

elements, associated with small surface elements. A perfectly homogeneous space

partition is one that allows a tiling of space by identical volume elements. A measure

of the degree of homogeneity of inhomogeneous surfaces is given by the amplitude

of variations in the size and shape of the volume elements.

S rdAN
dA(r)�MS

Figure 5.1:

The volume elements are defined in the following way. Given a

small surface element dA on the surface S, the associated volume

element is the space foliated by all parallel area elements dA(r).
The parallel area element dA(r) is that part of the surface elementdA after translation along its normal by a distance r that has not

collapsed onto the MS, i.e. that fraction of the translated dA for

which r � d holds.

A strong relation between the surface element dA and the corre-

sponding volume element dV exists. By virtue of the theorem of

Steiner [181] the size of the parallel area elements dA(r) of the

surface element dA at point p 2 S is given as an expansion in

mean curvature H and Gaussian curvature KdA(r) = dA(p)�1 +H(p)r + K(p)r22 � : (5.1)

For a finite surface element this formula only holds for r < minp2dAd(p), that is until

the first of its points collapses onto the MS. Even if dA is infinitesimal some care needs

to be exercised as d is, as a function of S, not necessarily smooth.

Curvature inhomogeneity and global homogeneity can then be separately measured:

the former as variations of the curvature, the latter as variations of the length of the
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volume elements (i.e. the MS distance function). In this thesis, we consider solely the

latter issue.

Our measure of homogeneity consists of the distribution P (d) of the distance function

over S, in particular its width (as for example measured by the standard deviation).�d =ph(d � hdi)2i =phd2i � hdi2 with hdki = Z dmaxr=0 rk P (r)dr: (5.2)

Volume- and area-weighted distributions of MS distances

A distribution of MS distances over the surface, or its second moment, yields a de-

scription of the packing frustration as outlined above. This section describes the com-

putation of this distribution for triangulated data and the possible normalisations.

Two sensible normalisations for this distribution are conceivable: either by the sur-

face area of the interface or by the labyrinth volume (A trivial frequency distributionF (d) that simply counts the number of sample points on S with distance function

within the range d+�d is meaningless as the distribution of points on S is in general

uneven and not representative of the metric of S).

From a differential geometric point of view, the most sensible distribution of d over S
is one that is normalised by the total surface area of the surface SPA(d) = 1A ZS da Æ�d0 � d(p)� (5.3)

where A = RS da is the total area of the surface S. In the remainder of this thesis, we

refer to this area-weighted distribution as P (d).
The second alternative is a normalisation to the total volume of the labyrinth, which

may be a more relevant normalisation for situations where the volume is fixed rather

than the total area. Using the partition presented in Figure 5.1) the domain is sub-

divided into volume elements of infinitesimal width but finite length, each of which

is associated with points on S and hence with a distance function value d. Then the

distribution, normalised by the total volume2, isP V (d) = 1V (C) ZC dV Æ�d0 � d(p)� (5.4)

where C is the domain and V (C) its total volume measure.

2Total volume here refers to the domain C, i.e. for a IPMS one of the two labyrinths. For a balanced
IPMS that is identical to half the total volume.
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Figure 5.2: Normalisation of the distribution of MS distances by surface area or labyrinth

volume:

In Section 5.4 we will show that the qualitative behaviour of these distributions, for

the four investigated IPMS, is the same with either of the two weightings. The quanti-

tative differences are small, owing to the similar surface-to-volume ratio of the inves-

tigated surfaces.

Computation of weights for triangulated domain representation

Numerically the distributions are easily evaluated once a triangulation of S and MS

coordinates for all points of S are determined (for both area- and volume-weighted

distributions). Two methods that yield the same result in the dense sampling limit

can be used, one slightly more accurate at finite sampling density, the other one easier

to implement. See Figure 5.2 as an illustration for the following notations.

For a vertex p 2 S we define Vp = Vol(C \ CV (p)) as the volume of that part of the

Voronoi cell CV (p) of p that is inside the domain C . This volume is the discrete ana-

logue of the volume elements defined above in Figure 5.1. The discrete area elementAp is given as that part of (the triangulation of) S that is contained inside the Voronoi

cell CV (p).3
An approximation to the distributions PA(x) and P V (x) is then calculated for each x
and given a discretisation �d, by summing the areas Ap (or volumes Vp) of all pointsp with d � x < d+�d. We expect this approximation to converge well as the surface

3Here we assume sufficiently high sampling density of the surface S. If the sampling density is too
low, it is possible that CV (p)may intersect with remote patches of S. This may be the case if, for example,
the spacing between vertices in a narrow channel of C is too large. The assumption is that the surface
patch inside CV (p) always contains p.
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patch Ap appears to be the patch best represented by the point p.4

It involves, however, computation of intersections of polygonal cells and surfaces

which is comparatively difficult to implement. Another difficulty appears for sym-

metric and periodic structures where the analysis can be restricted to the asymmetric

unit-patch. Then the cells on the boundary of the patch need to be assigned a weight

smaller than one to account for boundary effects.

A method that is easier to implement consists of going through all triangles rather

than points of the triangulation. It yields the same result in the dense sampling limit,

but is likely to give a slightly worse approximation for coarser triangulations.

We define the area element At as the area of a triangle t of the triangulation in 3D (or

the length of an edge in 2D). The volume Vt is the volume of the cell given by the

three vertices p1, p2 and p3 of the triangle t together with their images qi = ms(pi) on

the MS.5 Note that at finite sampling the face made up of the MS points need not be

contained in the MS, as is illustrated in Figure 5.2.

A distribution of distance function values, either volume or area normalised, can be

easily computed with these definitions. The distance function value that is assigned

to a triangle of the triangulation is the average of the distance function values of its

three vertices.

We finally mention that another type of distribution is interesting, although less rel-

evant to the problem of surface homogeneity: PM (r) is the fraction of the total cell

volume for which the distance D to the closest point on S is r � D < r +�d. In fact,

this measure is a distribution of the Euclidean distance map. Also, the points of iden-

tical distance function values are obviously reduced parallel surface sheets of S. This

in turn means that PM (r) is the first Minkowski functional (the area) of the reduced

parallel surfaces of S as a function r.

Effect of noise and small perturbations on the distance distribution

The MS construction can been criticised for its sensitivities to small changes of the

surface shape. In particular, only a small deformation of the surface is necessary to

4In some sense this association is reminiscent of the natural surface coordinates introduced by Bois-
sonnat and Cazals [21].

5A slight problem arises as some of the faces are not necessarily planar. For example, the face p1, p2,q1, q2 is only planar if the normal of p1 lies in the plane spanned by the edge p1 to p2 and the surface
normal of p2. If that is not the case and that facet is buckled, the volume is not unambiguously defined.
One needs to triangulate these faces. This can be done in a consistent way such that the cells, as an
ensemble, tile space. The error made due to this arbitrary choice is small in the dense sampling limit.
Alternatively, a construction of the volume by foliation of space with parallel surface elements avoids
this problem altogether.
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induce spurious branches of the MS that come much closer to the surface than the MS

of the original surface does (see Chapter 2). The distribution of distances is evidently

subject to the same sensitivities, a small bump in the surface (see the elephant on page

16) can radically decrease d in its vicinity, but never increase it.
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Figure 5.3: MS distance distribution

of a noisy oblate ellipsoid.

Note that this sensitivity applies to the distribu-

tion of (Gaussian) curvatures in the same way.

Nevertheless, they have proven to be very useful.

The argument in the curvature case is that any

curvature above a certain threshold can be disre-

garded as noise. That same argument applies to

the case of the distribution of distance function

values, in particular if the normalisation is to the

total surface area rather than to the volume.6

We nevertheless need to demonstrate that our al-

gorithm for the MS computation is robust with

respect to small changes, and that the distribution

of distances we obtain is indeed the correct result

for the particular labyrinth in the infinite sampling limit. To that purpose, Figure 5.3

shows an analysis for the case of an oblate ellipsoid given by (x=3)2 +(y=2)2+ z2 = 1:

Connected small black dots are data for a high-resolution ellipsoid (n=2:4 � 104 ver-

tices) for which the MS is computed by intersecting straight lines in surface normal

direction through the surface points with the z = 0 plane. Large symbols indicate data

computed with our algorithm. Data is presented for a relatively coarse triangulation

(n=2:2 � 103) with exact normals (open circles) and without (open squares) and one

where random numbers in [�0:03 l; 0:03 l℄ are added to the surface coordinates (filled

diamonds). The number l is the average triangle length.

We conclude that the distributions from our algorithm are indeed reliable approxi-

mations to the MS distance function distribution if the data stems from mathematical

parameterisations. For experimental data, the quality of the distributions needs to be

treated with the same caution as the MS construction itself.

6In both cases, this argument fails for multi-scale analyses. In those cases, setting an appropriate
threshold becomes impossible. Fortunately, the preferred curvature model does not allow for variations
of the curvature over many length scales.
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5.2 Relevance to liquid crystalline mesophase formation

The relevance of the notion of homogeneity to a variety of self-assembly processes

rests on the assumption of a preferred molecular shape. The mesophase that forms

for a molecule of a given shape is the one where the deviations of the individual

molecular shape from the preferred one are minimised while the global constraints

imposed by the composition are fulfilled.

The literature on liquid crystalline mesophase formation is vast and cannot be re-

viewed in this chapter. Much of the material is contained in textbooks [99, 117, 56,

123]. The original work by Larsson [125], Fontell [69] remain invaluable references.

Numerous reviews on bicontinuous mesophase formation [142, 97, 70, 190] and inter-

face and curvature models [178] exist.

A brief introduction to mesophase formation in amphiphilic systems

The best-documented systems for which homogeneity arguments have been applied

are amphiphilic lyotropic mesophases in surfactant-oil-water mixtures. Amphiphilic

molecules (like natural lipids or synthetic surfactants and tensides) are schizophrenic

molecules, in that they are made of two parts – a hydrophilic headgroup and one or

more hydrophobic tail(s).

Hydrophobic and hydrophilic components tend to demix, as hydrophobic molecules

are expelled from water-like environments. Yet macroscopic phase separation is made

impossible by the covalent bonding between the two parts. However, micro-geometries

exist where local interfaces globally shield the hydrophobic parts from the hydrophilic

ones. Among the wealth of geometries found in such systems are the relatively mun-

dane micelles, arrays of spheres of oil in aqueous solution with a layer of amphiphilic

molecules lining the interface – headgroups outside, tails inside. Also found are reg-

ular arrays of cylinders (hexagonal phases) of either oil in water or water in oil, and

alternating flat layers of water and oil (lamellae). The amphiphilic molecules always

assemble to form an the interface, with their headgroups towards the water phase and

their tails into the oil phase.

The interfaces discussed in this thesis are hyperbolic bicontinuous surfaces, partition-

ing space into two intertwined yet disconnected labyrinths on either side. Typically,

hydrophobic interfaces consist of a double layer of amphiphilic molecules (bilayer)

wrapped onto the surface, either with the polar hydrophilic headgroups towards

two water-filled channels separated by a hydrophobic layer (Type 2), or with the

the hydrophobic tails sticking into two oil-filled channels with and the headgroup
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assembling on the interface. These geometries can be adopted both by binary (water-

amphiphiles mixtures) and by ternary systems (mixtures of water, oil and surfactants).

In ternary systems, monolayer assembly is a further possibility where an oil channel

is separated from a water channel by a layer of amphiphilic molecules.7

The concept of a preferred molecular shape

To a first approximation, amphiphilic molecules may be regarded as building blocks

of a certain molecular shape, deviations from which are energetically penalised. The

typical picture is that of a molecule of a disk-like hydrophilic headgroup of area A,

with a hydrophobic tail attached to it that is characterised by a typical length and a

typical width. These assumptions lead to the now-famous dimensionless shape param-

eter s = V=(a l) introduced by Israelachvili, Mitchell and Ninham [103] and critically

reviewed in [207].

The so-defined shape parameter is related to curvature properties of the interface by

the formula for the volume of the parallel body of a surface S, that is the volume foliated

by parallel surfaces to S up to a distance l,s� := V �A l� = 1�H l + K l23 (5.5)

where H and K are the mean and Gaussian curvature of the interface, and the super-

script� indicates that the shape parameter for the two different sides may be different.

In particular, if the interface is a bilayer of identical molecules, the relation s+ = s�
immediately dictates H = 0, that means a minimal surface.

This superficial discussion heuristically motivates curvature energy functionals of the

form E = k=2(H�
0)2+kK with bending moduli k, saddle-splay k and spontaneous

curvature 
0. This functional is attributed to Canham [25] and Helfrich [87].

This expressions is also not restricted to the amphiphilic self-assembly case, but has

been derived in similar form for block-copolymers [101], surfactant films with spon-

taneous curvature [67], and thin films of isotropic linear elastic material [122]. The

simplest model for a surfactant molecule, a ball-and-spring model, is discussed in

[167]. A review is given in [178].

7Note that the distinction between monolayers and bilayers is one of convenience only, as is argued
in [96, 164, 102]: A bilayer can always be regarded as two monolayers, and assuming the existence
of punctures, bilayer geometries can be transformed into monolayer geometries without tearing and
gluing.
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water

water

Type 1 Type 2

Figure 5.4: Surfactants and lipid molecules may be characterised by the shape parameterV=(A l) where A is the head group area, l the average chain length and V the volume per

molecule. These amphiphilic molecules rearrange water and oil in such a way that they

pack with their tails in the oil-phase and their headgroup towards the water. Two types of

mesophases are distinguished, illustrated by a cross-section through the P surface. Type II

where two water-channels are separated by a hydrophobic bilayer, and Type I, where a layer

of water separates two hydrophobic channels. These hydrophobic regions can be hydrocar-

bon chains with or with additional oil. The dashed lines, the cross-section of the MS, can be

considered as the chaotic zones.

Chain stretching contributions – frustration

The picture of the preferred molecular shape suggests a preferred bending of the in-

terface (dependent on the wedge angle of the idealised molecule) evident in the cur-

vature contribution of the Helfrich functional. However this picture also suggests a

preferred length of the molecule, again under the assumption of monodispersity.

A number of authors have adopted a harmonic contribution, (l � l0)2, of deviations

from a nominal average length l0 of the hydrocarbon chains [116, 5, 50, 188].

For Type 1 bilayer phases, bending and stretching contributions are somewhat linked,

and frustrated. This is due to the fact that a parallel surface (constant l) of an minimal

surface has variations in H and thus deviates from the preferred curvature 
0. Vice

versa, a constant H interface related to a minimal surface (with average distance l0)

has necessarily variations in thickness [5, 28].

This result immediately follows from intrinsic properties only, and is the first indi-

cation of the importance of fluctuations of the Gaussian curvature. Energetically pe-

nalised deviations in mean curvature from the 
0 of the interface, parallel to a mini-

mal surface, result from non-constant Gaussian curvature K on the minimal surface.

The fact that fluctuations of K are a relevant measure determinant of the stability of



§5.2 Relevance to liquid crystalline mesophase formation 109

mesophase formation has been stated in [88, 95, 24] and more recently quantified by

computation of distributions of K in [186, 187, 188].

A rather expected result is that chain stretching is prohibitive for small chains, whereas

for large chains bending and stretching contributions are comparable. Pure curvature

models are appropriate in the limit of small chain length compared to the average

radius of curvature [178, 188] or more precisely the channel diameter.

Duesing et al. use this idea to quantify packing frustration in inverse hexagonal, mi-

cellar phases and bicontinuous phases (i.e. Type 2 [50]). Given a curvature-optimised

interface (among the bicontinuous structures they only consider the D surface), they

model the chain stretching contribution by a harmonic term (l � l0)2. They obtain an

expression that penalises variations of the distance from the surface to its line skele-

ton. We argue that the MS distance function is a more suitable choice.

For Type 1 bilayer phases, global packing properties (as opposed to analysis of fluc-

tuations of the distance between H = 
onst interfaces) can be more important if the

chain length is of the same order as the channel diameter, i.e. the MS distance func-

tion. In that case, the tails overlap; in overly simplistic terms, the overlap volume is

somehow related to the chain ends that penetrate further than the distance to the MS.

Relevance of the MS

In this thesis we refrain from proposing a specific model free-energy functional that

incorporates MS measures. Instead we describe these properties in purely geometric

terms. The biggest obstacle in formulating a free-energy functional is to incorporate

the relative importance of stretching and bending. This translates into the difficulty

of finding the correct length scale that is set by the complex interplay of these forces

and the constraints imposed by the chemical composition.

In our view the elucidation of geometric principles, in this case that of variations of

the channel thickness, is more important than the detailed quantitative analysis based

on models that, owing to the intricacies of the physical system, incorporate many

parameters, few of which can be measured directly. At the very least, gaining an un-

derstanding of the geometric principles is a necessary precursor to such calculations.

In many mesophases the average molecular chain length is not much smaller than

the typical channel radius (used here as the macroscopic length scale). The curvature

expansions are strictly valid in the limit of vanishing bilayer thickness only.8 Typical

8Note that, given the possibility of surface transformations preserving minimality, incorporation of
higher order terms is necessary even in this limit for consistency with thermodynamic stability [24].
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relations of the ratio between channel radii and surfactant chain length are 1:1 to 2:1

(e.g. the unit-cell length of the Im3m phase in DDAB-cyclohexane-water is 116 Å,

with approximately 600 atoms per unit-cell and a chain length of 10-13Å. The ratio of

the minimum diameter 116/4 of the P surface to the chain length is roughly 1:2 [15].).

Given such large ratios, the success of the curvature approaches must be considered

an amazing result and extrinsic properties should be considered more carefully.

In addition, Luzatti et al. have presented experimental evidence for the existence of

what they call chaotic zones [139, 142]: The lateral order of the flexible hydrocarbon

chains 9 decreases gradually as one ventures deeper into the hydrophobic phase away

from the interface. The hydrocarbon core of the structure, located at maximal distance

from the surface itself, is occupied with a high concentration of CH3 end-groups, an-

chored at different parts of the interface. There the packing is inevitably disordered.

Similarly, in the water phase the dipoles are strongly ordered in the vicinity of the

polar/apolar interface. This orientational order decreases with distance from the in-

terface, defining the centers of the water channels (or polar chaotic zones). Their as-

signment of chaotic zones of the cubic IPMS are the respective line graphs, yet the con-

struction is reminiscent of the MS construction which may be a more general model

for these zones.

Confocal domains frequently found in lamellar or smectic liquid crystals (see [117]

for an overview) also related to the MS construction. These are line singularities of

the evolute to an interface, and constitute topological defects in a variety of liquid-

crystalline phases. These singularities result from parallel transport along the surface

normal to the center of curvature, a process which involves different patches of the

surface passing through each other, whereas the MS construction obviously does not

allow for that.

These phenomena suggest that an analysis of extrinsic properties of space partitions

yields insight into the mechanisms of self-assembly and the relief of frustration, in ad-

dition to the common interface curvature descriptions. The remainder of this chapter

aims to provide this description for the most frequently encountered cubic IPMS. By

representing the data in three alternative normalisations, we provide the possibility

of comparison of these geometric results under different physical constraints setting

the length scale.

9See [27] for a review of the discussion about the flexibility of the chains.
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5.3 Relative length scales of IPMS

The length scale is a free parameter of minimal surfaces which are free to swell with-

out changing their mean curvature. It is typically set by physical considerations (vol-

ume/surface area, preferred curvature, preferred chain length). Comparison of scale-

dependent IPMS characteristics, such as Gaussian curvature and distance functions,

is meaningless without suitable adjustment of the length scale.

For a system where the length scale is determined by the preferred curvature of an in-

terface, the length scale of the compared IPMS should correspond to identical (average

Gaussian) curvature. For this normalisation the average Gaussian curvature hKi can

be calculated by the useful relation to the genus g (or the Euler-Poincaré characteristic�) of the surface and the total surface area, the Gauß-Bonnet theorem:ZS K dA = 2� � with � = 2(1� g): (5.6)

This theorem holds true for any oriented and compact surface (see for example [48] or

most differential geometry text books).

The genus is a topological invariant of a compact surface, indicating the number of

handles of a closed manifold (0 for a sphere, 1 for a doughnut, 2 for a pretzel) . For

IPMS the genus is usually given for a translational unit-cell (to be more precise, a unit

cell embedded in a flat three-torus T 3 to get rid of all translations [94, 58, 183]).

Note that it depends on the size of the chosen unit-cell. For example, the translational

unit-cell of the I-WP surface is twice the size of the smallest possible translational

unit-cell10. Therefore, its Euler-Poincaré characteristic is �12 (genus 7) although I-WP

surface is a IPMS of genus 4 (� = �6).

Alternatively, the length scale may be set by the surface to volume ratio. This situation

applies, for example, to a type 2 bilayer phase in a binary mixture where, globally, the

volume filled with hydrophobic components relative to the surface area is fixed by the

composition of the mixture [24].

The third alternative is most relevant to block-copolymer self-assembly. In that case,

the copolymer blocks fill the complete labyrinth.
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Figure 5.5: Area-weighted distributions of the MS distance function for isometric cubic G,

D and P surfaces, and the two distinct channels of a cubic IW-P surface scaled to have the

same average Gaussian curvature as the P, D and G surfaces. The width of the distribution

is a measure of the relative homogeneity of the surfaces. See Tab. 5.1 for averages, standard

deviations, minima and maxima of the distributions. The plots on the right show the same

data (and all distances with non-zero frequency) on a logarithmic vertical axis (the horizontal

axes are identical for all five figures).

5.4 Relative homogeneity of the P, D and G surfaces

This section presents the result for the stretching homogeneity of the cubic P, D, G

and I-WP surfaces. We show that the Gyroid minimises the fluctuation of the distance

10Since the translation along (1/2, 1/2, 1/2) is a congruence transformation
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P 4.711 1.31 0.19 2.03 1.09 1 1.084 -0.483
D 7.660 1.30 0.10 1.66 1.14 1 1.17280 -0.446
G 6.204 1.30 0.06 1.42 1.17 1 2.479 -0.422

I-WP (WP) 7.485 1.23 0.06 2.12 1.41 1 2.022 -0.357
I-WP (I) 6.447 1.21 0.25 2.15 0.97 1 1.500 -0.523

I-WP (both) 6.927 1.22 0.21 2.31 1.04 1 1.732 -0.453hdi = 1:30a hdi �d dmax dmin V=A A hKi
P 4.672 1.30 0.18 2.02 1.08 0.992 1.067 -0.491
D 7.689 1.30 0.10 1.66 1.14 1.003 1.182 -0.443
G 6.204 1.30 0.06 1.42 1.17 1.000 2.479 -0.422

I-WP (WP) 7.918 1.30 0.06 1.49 1.19 1.059 2.263 -0.347
I-WP (I) 6.940 1.30 0.27 2.31 1.04 1.076 1.738 -0.452

I-WP (both) 7.457 1.30 0.23 2.49 1.12 1.076 2.007 -0.39hKi = �0:422a hdi �d dmax dmin V=A A hKi
P 5.037 1.40 0.20 2.18 1.17 1.249 1.239 -0.422
D 7.875 1.33 0.10 1.71 1.17 1.201 1.239 -0.422
G 6.204 1.30 0.06 1.42 1.17 1.000 2.479 -0.422

I-WP (WP) 7.177 1.18 0.06 1.35 1.08 0.959 1.859 -0.422
I-WP (I) 7.177 1.34 0.28 2.39 1.08 1.113 1.859 -0.422

I-WP (both) 7.177 1.25 0.22 2.39 1.08 1.036 1.859 -0.422

Scale-independent parameters

Space group �=tuc multiplicity n4=ap �
P Pm3m -4 48 6� 103 1/2
D Fd3m -16 192 6� 103 1/2
G I4132 1:3� 104 1/2

I-WP (both) – -24 184 1:2� 103 1/2
I-WP (I) Im3m -12 96 6:4� 102 0.537

I-WP (WP) Im3m -12 96 6:4� 102 0.463

Table 5.1: Homogeneity of the P, D and G surfaces for different scaling of the length scale. The

fluctuations �d are defined in eq. 5.2, and the lattice parameter a refers to the space groupsPm3m (P), Fd3m (D) and I4132 (G) of the oriented surfaces. The Bonnet related data is scaled

such that V=A = 1 for the P surface, and hdi = 1:31 is chosen such that the values for the G

surface are identical in all three normalisations of the length scale. V is the volumne of the

channel whose MS is analysed. For the P, D and G surfaces, this is identical to 1=2 a3 and � a3
for the I-WP surface where � is the volume fraction of the channel.
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function over its surface and has the narrowest distribution. The values for the P and

D surfaces and the average value of the two distinct sides of the I-WP are distinctly

less homogeneous. However the “wrapped-parcel” channel of the I-WP by itself is as

homogeneous as the Gyroid. The order of homogeneity of the surfaces does not de-

pend on the choice of length scale normalisations (average curvature, area-to-volume

ratio or MS distance function value).

The distributions of d for all surfaces is shown in Figure 5.5, and their averages, max-

ima, minima and fluctuations are summarised in Tab. 5.1. The distributions are area-

weighted in the sense of eq. (5.3). The normalisation of the length scale is such the

values for the Gyroid are identical in all three normalisations. The surface-to-volume

ratio is defined as the area of the surface within a translational unit-cell to the volume

of the channel inside that unit-cell, i.e. 1/2 of the volume for the G, D and P surfaces

and 0.463 and (1-0.463) of the total volume for the two distinct I-WP networks.

For the I-WP we also show the data of a hypothetical balanced I-WP surface of twice

the area and volume, made up of one copy of each labyrinth. For the distribution of d
this corresponds to averaging of the two individual contributions.

The data for hKi = const = �0:422 is for isometric G, D and P surfaces.

Effect of variation of the sampling density of S on the distance distribution

The distance distribution as computed by our algorithm does not change significantly

if the resolution of the triangulation (still assumed to be exact surface points) changes.

Figure 5.6 shows the distance distribution for the P surface for different resolutions of

the asymmetric unit-patch. Although the finer details of the distribution, in particu-

lar its two peaks corresponding to the two saddle points S1 and S2 of the following

section, are only resolved for higher resolution, the overall features of the distribution

are similar for all resolutions.11

Volume-weighted versus area-weighted averages and fluctuations

The second issue (not to be confused with the choice of appropriate length scale of

the compared structures) is the normalisation or weighting of the frequency distribu-

tions. The data presented in Figure 5.5 and Tab. 5.1 is for area-weighted data as in

eq. (5.3). Instead of contributing the area of each small area element on the surface,

each data point can instead contribute the volume of its associated narrow volume

11The length scale of the distribution shown is that of the Weierstrass-representation in eq. (4.9) and
eq. (4.1) without any further scaling.
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Figure 5.6: (Left) Patch of the P surface with 105, 104, 103 and 102 vertices. (Right) Volume-

weighted distribution of distances for the P, D and G surfaces. The resolution of this data is

much lower than on the left.

element (see Figure 5.1) to the frequency distribution. Then the distribution becomes

that of eq. (5.4).

This weighting does not change the maximal or minimal values of the distribution,

but does have an effect on average and standard deviation. In general, for the rela-

tively curvature homogeneous IPMS discussed here this volume-weighted distribu-

tion increases the frequencies of large distance function values, by virtue of the simple

formula V = A � (1 + K l2=3). The differences between area-weighted and volume-

weighted distributions are small for the cubic IPMS, as shown in Figure 5.6 (right).

We expect this to hold true for any truly IPMS, as the distribution of d cannot have

infinite tails that could affect averages in unexpected ways.

5.5 MS geometry of the cubic P, D and G surfaces

This section describes the detailed geometry of the MS of the cubic P, D, G and I-WP

surfaces. The geometric features found here also appear (in less symmetric form) in

many of the continuous IPMS families discussed in the subsequent chapter.

The cubic P surface

The P surface bounds a labyrinth that is well characterised by a simple cubic lattice.

The nodes, with six emanating edges that are mutually perpendicular and along the

lattice directions, are the biggest cavities of the labyrinth. The constrictions, in be-
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Figure 5.7: Portion of a medial surface of the P(rimitive) IPMS, together with the IPMS. Both

the IPMS and the MS are coloured according to values of the distance function d: red indicates

small d values and blue large values. Red, yellow and blue spheres indicate minima, saddle

points and maxima of the distance function d, respectively. The red lines on the surface are

ridge lines of d connecting saddles to maxima, and the red lines on the medial surface their

images under ms.

tween two adjacent nodes, are nearly circular. At each node three mutually perpen-

dicular mirror planes coincide. The edges run along the intersection of two perpen-

dicular mirror planes.12

The MS of the P surface, illustrated in Figure 5.7, is geometrically simple and intu-

itively clear. It consists of the simple cubic line graph together with surface patches

fully contained in the mirror planes. At the nodes, twelve such patches meet. Pairs of

the emanating line graph edges have flat surface patches (“webs”) spanned between

them. The free boundaries of the MS patches are, by definition of the MS, points with

12Note that there are additional mirror planes at �=4 angles, both at the nodes and along the edges.
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(p).13 Near the constrictions, half-way along the edges, these surface patches

become narrower (closer to the line graph edges). Yet they do not shrink to a point, but

retains a cross-like cross-section. This is a reflection of the fact that the constriction –

which corresponds to a plane line of curvature on S in a (mirror) plane perpendicular

to the edge with normals contained in that plane – is not perfectly circular. Along the

constriction d varies between 0.5340 and 0.577, of variation of approximately 4%.14.

The MS of the P surface can be computed (almost) analytically. For any point p 2 S
that is contained in those mirror planes that contain the line graph edges, the corre-

sponding MS point q = ms(p) is the center of curvature: q = p + r
(p)N(p). These

points form the free boundary of the MS that correspond to lines of maximal curva-

ture15. For any other point p 2 S on the surface the corresponding MS point q = ms(p)
is found by intersecting the straight lines in normal direction through p with the near-

est global mirror plane.

Note that the presence of mirror planes is not sufficient to deduce that MS points are

necessarily contained in it. For example, the cubic D surface has three mirror planes

intersecting along the line graph edges, yet some of the MS points are not contained

in any of those mirror planes.

The MS distance function is maximal at the nodes of the simple cubic graph (blue

spheres in Figure 5.7). The mid point of the graph edges is a saddle point of the

Euclidean distance map D. The minimum of d on the MS also corresponds to a point

on the constriction (red points).

Note that there is only one type of maxima and minima, but two crystallographically

distinct saddle points: S1 in 100 (on Schoen’s line graph) and S2 in 110 direction from

the maximum (on the MS, see also Tab. 5.2).

The line graph calculated by the method described in Chapter 3 reproduces exactly

the simple cubic graph that is commonly accepted as the line graph of the P surface.

Figure 5.7 shows some additional edges, from points on the free boundary of the MS

patches to the maxima of D. These connect saddle points of the MS distance functiond (on S or MS) that do not correspond to saddle points of the Euclidean distance mapD to maxima of d (or D), see also Chapter 3.6.2 and 3.8.

13For a hyperbolic surface with unit normal fieldN pointing into the domainC, the radius of curvaturer
 is defined here as the positive radius of curvature of S. Only curvature towards the normal can induce
MS points (on the MS of C, i.e. in normal direction of N ).

14Schoen [183] erroneously quotes this number as 0.4%.
15On a hyperbolic surface with r
(p) defined as the positive radius of curvature and the positive unit

normal N(p) pointing into the domain C, a curve � on S is a line of maximal curvature if the following
conditions apply: the directional derivative rr
 : TpS ! R of r
 has one vanishing eigenvalue with
eigenvector t0, in the tangential plane TpS at p, in direction of the tangent of �. It is a ridge line of the
curvature.



118 MS Analysis of cubic IPMS

An interesting correlation between the critical points of d for the P surface and its

distribution of MS distances can be made. The two peaks of the bimodal distribution

of distances in Figure 5.5 correspond to the two saddle points S1 and S2 of d.

The cubic D surface

Reduction of the MS of the cubic D surface to a line graph reveals that the Diamond

network (“dia” in O’Keeffe’s notation16) is indeed the geometrically centered line

skeleton of the cubic D surface. The geometry of its MS is more subtle than for the

P surface. First, some parts of the MS do not lie in the global mirror planes, although

most do. Second, the distribution of MS distance along the Diamond graph has max-

ima not only at the nodes but also at the edge centers, even though these are very

weak.

Figure 5.8 shows the geometry of the MS. The red lines (along [111℄ directions of the

corresponding space group Fd3m of the oriented D surface, see Tab. 5.2) correspond

to one of the two interpenetrating diamond lattices commonly accepted as labyrinth

graphs of the D surface [183]. The blue spheres indicate the main distance function

maxima located at the nodes of the line graph, and the small red spheres its minima.

The MS can be approximated by an assembly of almost flat webs spanning the six

pairs of graph edges (from the node to the middle of the edge) emanating from each

node, and each of these webs is contained in one of the global mirror planes. The two

sets of three webs meeting at the center of each graph edge subtend angles of 60o with

each other.

The top right image is a close-up of the MS in the vicinity the middle of a graph

edge. The graph edges are on three-fold symmetry axes, with inversion centers at

their midpoints (blue spheres). Each of the yellow spheres S1 (saddles of d on the free

boundary of the MS that are not saddles of the Euclidean distance map D) lie on a

two-fold axis through this inversion center). The medial surface webs do not shrink

to a single point as one moves along the graph edge, but rather each of the webs splits

up into two webs (at �60o). It is only in this region that the MS is not contained

within global mirror planes of the surface. The yellow and green spheres indicate

saddle points of the distance function and the blue sphere a very weak maximum of

the distance function. Critical paths connect the node max Max1 to the saddle S2 on

the edge (red line), S2 to Max2 (green line).

The graph shows the distance function on a (110) plane intersection of S (i.e. the mir-

16See the homepage, http://okeeffe-ws1.la.asu.edu/RCSR/home.htm, of the Reticular Chemistry
Structure Resource.
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Figure 5.8: D surface: (Left) A fragment of the D IPMS is shown, together with the medial

surface of one of its two channel labyrinths.

ror plane relating the two blue planes. The graph corresponds to distance function

values on the line graph on MS). Dots are data computed with our algorithm, whereas

the full curve is the length of lines directed along surface normals between the surface

vertices and the global mirror planes. In this way, exact distance values for the region
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from the graph nodes to the edge center can be computed, clearly demonstrating that

the blue sphere is indeed a weak maximum and the orange sphere a saddle point.

The cubic G surface

The MS geometry of the Gyroid is distinctly different from those of the P and D sur-

faces, see Fig. 5.9. At a first glance, its MS seems to be ribbon-like, displaying no

clearly discernible branch lines where MS patches meet. The MS appears as an as-

sembly of triangles, twisted at their common vertices and with sail-like MS patches

smoothly connecting edges of neighbouring triangles. More detailed analysis reveals

that branch lines exist.

The Y � (or Laves or srs) graph, commonly accepted as the line skeleton of the Gy-

roid, is indeed geometrically centered. However its three-coordinated nodes are not

at points of maximal channel diameter (Euclidean Distance Map), but at saddles of D
with three directions of increasing and decreasing EDM, respectively (Hopf index -2).

The points of maximal distance function are located at the mid-points of the graph

edges.

Figure 5.9 illustrates the MS of the G surface. The conventional labyrinth graph (blue

thick lines) for the G surface connects nearest pairs of points of intersection of these

two-fold axes through straight lines [183]. These are a subset of the ridge lines of the

distance function, though, in contrast to the P and D surfaces, the nodes of the channel

graph are not the maxima of the distance function (the maxima, blue spheres, are in

the middle of the edges). There are three different types of saddle points of the dis-

tance function: saddle singularities of Hopf index �2 at the nodes of the graph (large

yellow spheres), S1, as well as two types S2 (small yellow spheres), and S3 (green) of

saddle singularities of Hopf index �1. The critical paths connecting S3 to the max-

imum and S2 to the maximum are not shown. The top right image (with arbitrary

color coding) illustrates that the medial surface is an assembly of nearly planar tri-

angles (green) plus webs spanned between the edges of neighbouring triangles. Pairs

of adjacent triangles share common vertices and are twisted by 
os�1 (1=3) � 70:53Æ
around the common two-fold rotational axis containing the the labyrinth graph, con-

sistent with symmetries of the G surface. Calculations indicate that the triangular

portions of the MS deviate from planarity by only �0:75% of the triangle edge length.

The figure on the bottom right shows one of the triangles of the MS with the saddle

point in its center and three maxima located at each of its corners beneath a surface

graph with height indicating the value of the distance function at the site immediately

below, on the projected triangle.
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Figure 5.9: Medial Surface of the G(yroid) IPMS coloured according to the scheme described

in Figure 5.7. The thin black lines are some of the two-fold rotational symmetry axes of the

G surface. Note in particular that the three-coordinated node of the line graph (big yellow

sphere on MS) is not a maximum of the distance function d (or the Euclidean distance mapD), but a saddle point of those functions. The maxima of D (or d) are the mid-points of the

edges of the line graph (small blue spheres). Bottom left: Illustration of the distance function:

Shown is one of the (nearly) flat triangular patches of the MS together with the surface given

by q +D(q)M(q) where q are MS points and M(q) the constant MS normal.



122 MS Analysis of cubic IPMS

5.6 MS geometry of the I-WP surface

The I-WP surface divides space into two non-congruent labyrinth. Each gives rise to

a MS that is clearly distinct from the other. Both MS are made up of surface patches

mostly contained in the global mirror planes. The I MS is similar in character to those

of the D and P surfaces in that it has branch lines along the line graph edges and clear

maxima at the 8-connected node. The WP MS, on the other hand, is reminiscent of the

Gyroid in that its 4-connected nodes are saddles of Hopf-index -3 and its line graph

edges are two-fold rotation axes contained in the MS, but not along branch lines.

“I” for Innenzentriert

The MS of the body-centered I-labyrinth (O’Keeffe’s “bcu” graph) is shown in Figure

5.10 (bottom). It contains the body-diagonals as its branch lines. They also consti-

tute the line graph that is (trivially because of the mirrors and the three-fold rotation)

geometrically centered. The MS patches are webs that span all adjacent pairs of body-

diagonals of a cube of size a=2 (the body centered cube with the four yellow spheres

at its corners).

There is only one type of node which is eight-connected and a distinct maximum of

the EDM D (or d), located at the eight corners of the cubic translational unit-cell and

its body center.

The points at (1/4, 1/4, 1/4) are at the middle of the line graph edges, and are inver-

sion centers of the space group (:3m, 8c in Im3m). The MS nearly shrinks to almost to

a point (yellow spheres), and the flat MS patches in either direction of the edge are ro-

tated by �=3 compared to each other (Similar to the D surface MS yet stronger). They

appear to be saddle points of D.

In the vicinity of these saddle points some transition structure from the two sets of

twisted MS patches is necessary. It appears from high resolution analysis to be similar

to the D surface MS sails spanning the edges of adjacent MS patches, yet the size of

the region where this happens is much smaller than in the D surface case. Careful

analysis suggests that the transition is very similar to the case drawn in the linegraph

chapter in Figure 3.7. The edge mid-point is, in contrast to the D surface case, indeed

a saddle of D but not of d, denoted S1.

There are additional saddles of d, but not of D, that are in equivalent positions to the

saddles S2 of the D surface, see Figure 5.8. Hence we give them the same name.

The curvature maxima correspond to the minima Min of D and d and are located on

the boundary of the MS, still in the immediate vicinity of the edge centers. Note that
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z

Figure 5.10: The two MS in either of the two geometrically different channels of the I-WP

IPMS: (Top) MS of the WP side (Bottom) MS of the I side (Here, the surface itself is cut open

along [001], [010] and [110] planes for enhanced visibility of the MS).
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even this minimum is still very close (both in distance in real space and in distance

function value) to the edge center.

Another saddle S3 of d but not D is on the MS boundary half-way along the boundary

of the webs in between the two corresponding saddle points S1. This is the analogon

of S3 in the D surface case.

“WP” for Wrapped Parcels

The MS of the WP labyrinth of the I-WP surface (O’Keeffe’s “nbo” network) is very

different to that of the I labyrinth. That difference is reflected in its MS. Essentially,

the MS is a collection of almost quadrilateral flat surface patches, joined at the corners

incorporating a �=2 twist around their common axis. Similarly to the D surface, small

sails span the edges of neighbouring quadrilateral patches (i.e. again the MS does not

shrink to a point). The four-connected planar nodes of the line graph are saddle points

of d or D, whereas the midpoints of the edges are maxima of the distance function.

Figure 5.10 (top) shows an illustration.

The line graph of the WP labyrinth consists of edges connecting four-connected nodes

at [0; 0; 1=2℄ (4=mm:m, 6b) sites connected to each other by edges in (100) direction.

The nodes are the yellow spheres in Figure 5.10 (top). The edge midpoints are at[1=4; 0; 1=2℄ (4m:2, 12d, blue spheres). The incident edges at each node are coplanar,

and planes between neighbouring nodes are twisted by �=2 around the edge.

The MS is best visualised as flat squares whose midedge points are at [1=2�1=4; 0; 1=2℄
and [1=2; 0; 1=2 � 1=4℄ with the four-node at its center. These flat patches are propa-

gated through space by the diagonal two-folds 1=4; y; y + 1=2 (..2) through the mid-

edge points – inducing the �=2 twist between neighbouring patches. Small sails span

adjacent edges of these four-patches and contain a part of the diagonal two-fold axes.

The distance function (or Euclidean distance map) maxima at the midedge points have

substantially higher values (d = 0:59) than the four-nodes (d = 0:525).

5.7 Final thoughts

This chapter offers a complete description of the MS geometry of the ubiquitous cubic

G, D and P surfaces of genus 3 and the I-WP surface of genus 4.

In terms of surface homogeneity, we have demonstrated that the degree of variation

of channel size, as defined by the MS distance function, provides a new homogeneity
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measure according to which the Gyroid is more homogeneous than the cubic D sur-

face which, in turn, is more homogeneous than the cubic P surface. We have shown

that this result is valid for three different length scale normalisations where the aver-

age curvature, the average distance function and the surface to volume ratio, respec-

tively, are kept constant. This analysis is based on properties that cannot be derived

from intrinsic characteristics alone.

We have also shown that, somewhat surprisingly, the “Wrapped-Parcel” channel of

the I-WP surface is as homogeneous as the cubic Gyroid, whereas the “I” channel is

slightly less homogeneous than the cubic P surface.

This result underlines the special role of the G surface among the balanced low-genus

IPMS. It provides simple geometric evidence for the superior embedding of the G

compared to the P and D surfaces.

In terms of the MS geometry we have shown that the commonly accepted line graphs

of all four surfaces, set by symmetry considerations, are indeed geometrically cen-

tered line skeletons, as defined in Chapter 3. However, the line graph nodes for the

cubic Gyroid and the WP labyrinth of the I-WP surface do not define the widest aper-

tures on the surface, but the narrowest. The corresponding widest points are at the

midpoints of the straight line graph edges. Indeed they correspond to normal MS

points (i.e. resulting from the collapse of exactly two surface points), whereas the P

and D surface nodes (that are maxima of the EDM) are branchpoints at the intersec-

tion of multiple MS patches.

This finding provides a counter-example to the assumption that is occasionally sug-

gested [198], that a network inside a labyrinth connects multiply connected wide

pores via narrower tunnels.

In the case of the WP labyrinth of the I-WP surface, the geometrically centered line

graph is clearly shown to be the one with edges along [100] directions, and four-

connected planar nodes at the face-centers of the translational unit-cell. Recently, a

different graph inside the labyrinth, yet not homotopic to the domain, has been men-

tioned as the WP line graph, in work suggesting a new model for smectic blue phases

with line defects [43, 44]. In these articles an “optimal line defect structure” is guessed

with three-connected nodes at the (1/4,0,1/2) sites and two types of edges – resem-

bling closely the boundary of the MS squares, close to lines where the MS points cor-

respond to centers of curvature.
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complex plane on surface S
point ! Coordinates Sym Wyck

Primitive, Pm3m, a = 2:15652, � = �=2y2=0.1751, x1=0.3249Max w1 [14 ; 14 ; 14 ℄ 3m 8gMin 0 [12 ; 14 ; 0℄ mm2 12hS1 w5 [12 ; y2; y2℄ mm2 12jS2 w2 [x1; x1; 0℄ mm2 12i

Diamond, Fd3m (origin at 43m), a = 3:37150, � = 0x3=0.1846, x5=0.1910, y5=-0.0247Max1 w1 [18 ; 18 ;�18 ℄ 3m 32eMin 0 [14 ; 14 ; 0℄ 2mm 48fS1 w2 [14 ; 18 ; 0℄ 2 96hS2 w3 [x3; x3; z3℄ m 96gMax2 w4 [x5; x5; y5℄ m 96g

Gyroid, I4132,a = 2:65624, � � 38:015ox1=0.124, y1=0.702, z1=0.176, x4=0.491, x3=0.3375, x4=0.491, y5=-0.1625Max w6 [x1; y1; z1℄ 1 48iS1 w1 [0; 12 ; 0℄ 3 16eMin 0 [0; 34 ; 18 ℄ 2 24fS2 w2 [�14 + x3; 58 ; 12 � x3℄ 2 24hS3 w5 [18 ; 1 + y5; 14 + y5℄ 2 24gI of I-WP, Im3m (origin at m3m), a = 3:15491, � = 0z0=0.1667, x2=0.321, y0 = 1=2 � x0, x1=0.1374, x6=0.41, y6=0.20

Max { [0; 0; 12 � z0℄ 4mm 12e

S1 [x2; x2; z2℄ m 48k

S2 1=3 +p2=3 { [1=2 � x1; 1=4; x1℄ 2 48i

S3 1 +p2 { [1=2; y0; y0℄ mm2 24h

Min [x6; y6; y6℄ ::m 48k

WP of I-WP, Im3m (origin at m3m), a = 3:15491, � = 0y8=0.303, z8=0.181, z0=0.1667

Maxw [1=2; y8; z8℄ m 48j

Sw1 { [0; 0; 12 � z0℄ 4mm 12e

Table 5.2: Crystallographic coordinates of minima, maxima and saddle points of d (coordi-

nates), together with the point group symmetry of the site (Sym) and its Wyckoff symbol

(Wyck). Crystallographic coordinates refer to the space group [85] of the domain C (i.e. the

“black-white group” of the oriented surface). Corresponding absolute values of the distance

function d and the radius r
 = 1=p�K (where K is the Gaussian curvature) are listed, for unit

cells of lattice parameter a (Unit cells are scaled such that the three surfaces are isometric).

The numerical values for coordinates are correct to �2 in the last given digit, unless otherwise

indicated. (continued on page 127)
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position on MS
point Coordinates Sym Wyck d r

Primitive, A0 = 0:2272, V0 = a3=(2 � 48) = 0:104, hdi = 0:60y1=0.018, x2=0.136Max [0; 0; 0℄ m3m 1a 0.9338 1Min [12 ; y1; 0℄ mm2 12h 0.500 0.5000S1 [12 ; 0; 0℄ 4=mmm 3d 0.5340 0.5774S2 [x2; x2; 0℄ mm2 12i 0.577 0.5774

Diamond, A0 = 0:2272, V0 = a3=(2 � 192) = 0:100, hdi = 0:57z1=0.1483, x2=0.004, x4=0.1129Max1 [0; 0; 0℄ 43m 8a 0.7230 1Min [14 ; 14 ; z1℄ 2mm 48f 0.5000 0.5000S1 [18 + x2; 18 ; 18 � x2℄ 2 96h 0.5774 0.5774S2 [x4; x4; x4℄ 3m 32e 0.5929 0.6547Max2 [18 ; 18 ; 18 ℄ 3m 16c 0.5949 0.615

Gyroid, A0 = 0:4544, V0 = 0:197, hdi = 0:56z2=-0.064, x4=0.491, y6=-0.311Max [14 ; 58 ; 0℄ 222 12d 0.609 0.683S1 [18 ; 58 ;�18 ℄ 32 8b 0.575 1Min [0; 34 ; z2℄ 2 24f 0.500 0.5000S2 [�14 + x4; 58 ; 12 � x4℄ 2 24h 0.577 0.5774S3 [18 ; 1 + y6; 14 + y6℄ 2 24g 0.558 0.5774I of I-WP, A0 = 0:3593, V0 = 0:537 � a3=96 = 0:1758, hdi = 0:59x3=0.25, y4=0.34, x7=0.31, y7=0.29

Max [0; 0; 0℄ m3m 2a 1.05 1
S1 [x3; x3; x3℄ :3m 8c 0.50 0.51

S2 � [x3; x3; x3℄ 2 48i 0.50 0.500

S3 [1=2; y4; y4℄ mm2 24h 0.50 0.500

Min [x7; y7; y7℄ ::m 48k 0.48 0.47

WP of I-WP, A0 = 0:3593, V0 = 0:463 � a3=96 = 0:1514, hdi = 0:52
Maxw [1=2; 1=4; 0℄ 4m:2 12 0.59 0.756

Sw1 [0; 0; 1=2℄ 4=mm:m 6b 0.525 1
Table 5.2 (continued from page 126): The area of the asymmetric unit-patch,A0, area-

weighted average distance, hdi and the volume associated with the asymmetric unit-patch,V0, are also listed. V0 is the volume foliated by reduced parallel surfaces in positive normal

direction from the surface, i.e. the volume on one side of the original surface. The surface coor-

dinates are obtained from usual Weierstrass representation for minimal surfaces as in [64, 160]

plus roto-translation in E3 . The Weierstrass functions are given in eq.4.9 and eq. 4.13 with

Bonnet angle �. The complex variable w indicates the preimage in the complex plane of the

respective points (w1 = (p3 � 1)=p2, w2 = (p2 � 1) exp({�=4), w3 = 0:3178, w4 = 0:2863,w5 = (p2� 1) exp({3�=4), w6 = 0:3644 exp({ 0:4177�)).
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Chapter 6

Medial Surface Analysis of

continuous IPMS families

Continuous families of IPMS formed by crystallographic deformations of the cubic

Primitive, Diamond and Gyroid surfaces are known. This chapter describes their MS

geometry, extrinsic surface homogeneity measures and transient line graph structures.

These surfaces offer pathways between the cubic IPMS, maintaining minimality and

channel topology throughout the evolution. In contrast to the Bonnet-transformation

(where intermediates between cubic cases are self-intersecting) all members of these

surface families are free of self-intersections. The surface families discussed here

are the tetragonal tD and tG surfaces, and the rhombohedral rPD and rG families,

parametrised and analysed in terms of intrinsic properties by Fogden, Hyde et al.

[66, 65, 63].

We present an analysis of their packing homogeneity by characterising the distribu-

tion of MS distances by their averages hdi(r) and fluctuations �d(r), in the same spirit

as the previous chapter. This analysis reveals that the cubic Gyroid and the cubic Di-

amond surfaces are maximally homogeneous within the families that contain them

(the rG and tG for the Gyroid, and the rPD and tD for the Diamond). In contrast,

the cubic primitive surface represents an inflection point of �d(r) of the rPD surface.

Thus it has degradations that are more homogeneous in a packing sense. In particular,

along the rPD the homogeneity decreases monotonically from the cubic Primitive to

the cubic Diamond.

The implications of this finding to the mesophase formation in bicontinuous liquid

crystalline phases are evident. First, continuous families of embedded IPMS provide

a model for transitions of systems in which all of the three cubic Gyroid, Primitive

and Diamond phases form dependent on the concentration.1 This transition has been

1Such a system has been described recently [208, 205]. It is a saturated 2:1 (mol:mol) fatty
acid/phophatidylcholine mixture in water in which the Gyroid, Diamond and Primitive phases form
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shown to be very fast between the G and D phase indicating little tearing and fusion

of the bilayer [205].

Second, the prevalence of cubic IPMS in self-assembled mesophases in lipid, surfac-

tant and copolymer mesophases demands exploration. In these systems, symmetry

is at best a secondary consequence of the optimal shape. The issue why they tend

to form phases with cubic symmetry is best addressed by studying surface families

that are in general not cubic, but comprise singular members with cubic symmetry.

Also, the occasional occurrence of non-cubic phases in systems, where the individ-

ual building blocks are less symmetric and hence not so well captured by curvature-

based descriptions, emphasises the need for consideration of extrinsic surface proper-

ties (c.f. the ABC triblock copolymer in chapter 7 and [12, 54]).

Another aspect of our analysis concerns the transition of the line graphs correspond-

ing to the IPMS labyrinths, in particular in terms of coordination number at the nodes.

Some of these transitions involve changes of the node-connectivity of the networks,

that are three-, four- and six-connected for the cubic Gyroid, Diamond and Primitive

surfaces.2

Transitions between differently coordinated graphs have been described in great de-

tail, in particular for for the case of IPMS by Charvolin and Sadoc. An example is the

classical transition from a four-node to two three-nodes by insertion of an additional

edge – which is often drawn schematically with equal incident angles between edges

at the nodes. If the transition of the graph is illustrative of the transition of a channel

system in which it is contained, the line graph should be centered within the labyrinth

(as is the graph defined in Chapter 3).

We show in this chapter that the topological and geometric transitions of the line

graphs of the tG and rG labyrinths involve very uneven incident angles of the edges.

An example is a four-connected node consisting in two pairs of tangentially incident

edges, somewhat in contrast to the common picture described above.

The first part of this chapter gives our results regarding the homogeneity of the sur-

face families and gives a brief review of relevant literature (sections 6.1 and 6.2). The

second part (section 6.3) contains detailed descriptions of the MS geometry and the

topological and geometric properties of the line graph.

as the water content is increased.
2In the remainder of this chapter, we sometimes refer to such transitions as topological when speaking

about the graphs, although this is not the completely correct term.
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6.1 Concepts and relevant literature

A surface or a member of a surface family?

The notion that there is a Primitive surface (or Gyroid, ...) is somewhat misleading.

Rather, the Primitive surface is a (especially symmetric) member of a whole family of

surfaces with a number of parameters distinguishing between the individual mem-

bers. This fact is easily forgotten because of the overwhelming emphasis on symmet-

ric structures, or hidden by the fact that expressions for the more general cases are

lacking.3

In many cases (such as rPD, tD, tP) a Flächenstück that is bounded by straight lines can

be identified. The subset of the surface bounded by that frame is obviously the solu-

tion of a Plateau “soap film” problem. In these cases, a surface family may simply be

constructed by deformation of the frame in ways that avoid self-intersections when

the patch is propagated through space by the two-fold rotations around its edges.

For example, the rPD surface is obtained from propagating a soap film spanned be-

tween two parallel triangles twisted by 60o around their midpoint normal (a triangular

catenoidal neck) by two-fold rotation. In that case, the distance 
� between the triangles

is (determined by) the parameter r of the surface family.

All of the IPMS families described here are embedded for any value of their param-

eters, that is they are without self-intersections. In contrast, the celebrated Bonnet-

transformation produces, for any minimal surface, a family of (in general) self-intersecting

minimal surfaces (the Bonnet angle being the parameter of the surface family). In

particular, members of the Bonnet-family containing the P, D and G surfaces is self-

intersecting for all Bonnet angles apart from the ones corresponding to the cubic cases.

Vice versa, the members of the Bonnet-family are evidently isometric to each other

(identical in all intrinsic properties), which is not the case for any of the surface fam-

ilies discussed in this chapter. For example, without appropriate scaling, the end

points (G and D) and all other members of the transition from the cubic Gyroid to

the Diamond (or Primitive surface) via the rG and rPD surface families are not Bonnet

related.4

For the self-assembly of lipids and surfactants, self-intersections correspond to tearing

3For example, generalisation of the cubic Gyroid (i.e. surface families containing the cubic Gyroid)
were not known until the early 1990s [63], and believed not to exist [183]. Another example is the I-
WP surface whose deformations fall outside the class of regular surfaces [65], and that is hence often
considered as a surface rather than a continuum of surfaces by lack of knowledge of its generalisations.
Yet, the existence of a single surface that does not allow for any deformations preserving minimality
cannot be excluded.

4However, the cubic members, P and D, of the rPD family are Bonnet related due to the fact that the
rPD is a self-adjoint family of surface with the D member being the adjoint equivalent of the P.
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Figure 6.1: (Fig. 3 from [66]): “Layout of the three cubic IPMS and the pathways of their 3-

and 4-fold generalisations and relatives. [...] The terminals (open circles) of the families are

labeled 3 and 4, representing saddle towers of this symmetry (� denotes the adjoint), or h and c

to indicate helicoid and catenoid.” A slightly misleading aspect of this diagram is the position

of the intersection between rG and rPD surface. It is at r0 = 0:49472, which is in between

the cubic Primitive and the helicoidal limit rather than in between the cubic Primitive and

Diamond surface.

gluing of the bilayer. As the common assumption is that both have prohibitively large

energy penalties, the viability of the Bonnet family as a physically viable pathway

between the cubic members is questionable (Note however that in systems exhibiting

two cubic phases the ratio of lattice dimensions between the two phases is experimen-

tally often commensurate with the Bonnet transform [100]).

The parameterisations of the surfaces discussed here are given in chapter 4, alongside

with some comments on related surface families such as nodal or constant mean cur-

vature surfaces.

Continuous pathways between the cubic Gyroid, Diamond and Primitive surfaces

The surface families analyzed in this chapter all contain at least one of the cubic Primi-

tive, Diamond or Gyroid surfaces and provide pathways between these three surfaces.

Figure 6.1 (from [66]) illustrates the layout of the pathways traced by the tD, tG, tP,

rPD, and rG surface (and a few others that are not considered in this thesis).5

These families allow the following two transitions between the cubic Diamond and

cubic Gyroid surfaces (among others that are not considered here): (1) D via rPD to P

5The representation in Fig. 6.1 is slightly misleading in that the actual rhombohedral path from D
(r0 = p2 on the rPD) to G passes through the cubic P surface (r0 = 1=p2 on rPD) before the junction
with rG (r0 = 0:49472 on rPD).
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via rPD and rG to G, and (2) D via tD and tG to G.

Literature on non-cubic IPMS in liquid crystalline self-assembly

Discussion of the possibility of non-cubic bicontinuous phases based on IPMS in lipid

or surfactant self-assembly or the geometry of transition structures between cubic

phases has only started recently.

For self-assembly in lipid/surfactant mixtures, this is due to the overwhelming ma-

jority of equilibrium bicontinuous IPMS phases being cubic. One of the few non-cubic

phases reported is the structure of the alveolar surface in lung tissue, modeled by the

tetragonal CLP surface [126, 127]. Furthermore, Hyde and Fogden [100] speculate on

the possibility of misidentification of phases because analyses based only on symme-

try (as measured in SAXS) can not ascertain the topology of the phase. For example,

hexagonal phases (now found for example in ionic amphiphile-water systems display-

ing limited diffraction peaks [33]) that are assumed to be hexagonal closed-packed ar-

rays of micelles share the symmetry of the bicontinuous hexagonal H surface which

is another candidate for their structure.

For block-copolymer systems, focus is on AB diblock copolymer blends in which cubic

phases prevail. Even more, it is claimed that there is essentially only one type of cubic

bicontinuous phase based on the Gyroid morphology [16]. Upon consideration of

more general classes of copolymers, for example ABC linear or star-block copolymers,

this focus is likely to shift. Non-cubic phases based on periodic hyperbolic surface

forms have been found, see [12, 54] and chapter 7.

Reports on details of phase transitions between cubic IPMS phases in surfactant/lipid

systems are also fairly recent [208, 205, 182, 168]. Based on time-resolved X-Ray

diffraction, Squires et al. [205] suggest that the time-scale of the transition points to

one without tearing and gluing of the membrane. Saturni et al. [182] and Pisani et al.

[168] both comment that non-curvature contributions to the free-energy may play a

crucial role in the transition.

Two similar topological models for the transition between different bicontinuous struc-

tures have been put forward [176, 177] and [17].

Fogden and Hyde analyze the tetragonal and rhombohedral IPMS families discussed

in this chapter in terms of their intrinsic curvature properties [66]. They conclude

that energetic penalties from increased curvature heterogeneity along the tetragonal

families are relatively slight, leading to the possibility of non-cubic stable intermedi-

ates within those families and possible transition structures for cubic-to-cubic phase

transitions.
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Non-minimal surface families that model topologically identical transitions to the one

considered here have been described. Leoni et al [131, 132] analyze phase transitions

of inorganic crystals in terms of periodic zero-potential surfaces [212] and periodic

nodal surfaces [213]. These are implicitly-defined surfaces given by enumeration of

their Fourier series. Many of these are known to approximate IPMS, though they are

not ideal.

The surface families parametrised by Fourier-modes are obviously larger than the

families of minimal surfaces, as the condition of minimality is not imposed. For exam-

ple, imposition of the condition of being part of the regular class of minimal surface

[64, 65] makes a symmetry degradation in form of removal of mirror planes from the

tD surface family possible only at the value r0 = 0:43188. Surface families given by

series of Fourier modes are not subject to that constraint and branch off anywhere.

6.2 Packing homogeneity via fluctuations of MS distances

This section presents measures of the relative packing homogeneity of the surface

families. The measure for surface homogeneity is the one introduced in section 5.1.

We restrict ourselves to an analysis of the standard deviations of the distribution of

the MS distances, rather then presenting the distributions themselves.

The outcome of this analysis is that the cubic Gyroid and the cubic Diamond corre-

spond to deep minima of the fluctuations of d around their average along all symme-

try degradations considered (rPD and tD for the D, and rG and tG for the Gyroid).

In contrast, the P surface is an inflection point of these variations (along the rPD), in-

dicating reduced homogeneity.6 This result is shown to be true for transitions that

preserve volume to surface ratio and those that have constant average distance func-

tion.

Normalisation of the length scale

The length scale, as given by the Weierstrass parameterisation, of the individual mem-

bers of continuous IPMS families is arbitrary, as explained in more detail in section 5.3.

A sensible and physically relevant normalisation is required. In a model for the tran-

sition between two different liquid-crystalline mesophases, e.g. between the Primitive

6It is regrettable that we do not present data for the tP degradation. The only reason for the lack of it
is shortage of time.
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and the Diamond structures, the requirement may be constant surface to volume ra-

tio, or constant average distance function (chain length), or constant average curva-

ture (corresponding to the preferred curvature)7. For the alleged transition structure,

such as via the rPD family, this requirement then provides the normalisation for the

length scale (the arbitrary factor in the Weierstrass coordinates) of the surface.

In the context of transitions of liquid crystalline mesophases, a normalisation such

that V=A = 1 is appropriate to describe transitions where the water content and the

interface area, the sum of head group areas, does not change.

A normalisation such that hdi = 1 suggests a preferred MS distance function value,

corresponding to a preferred labyrinth channel radius, and therefore a preferred chain

length.8 This concept is a tempting one as an energy functional penalising deviations

from the preferred, and hence on average adopted, chain length could easily be writ-

ten down. However, it has to be considered that, at least for liquid crystalline self-

assembly, chain stretching contributions are usually considered as an additional effect

to interface bending.

Therefore, in a system with a preferred curvature (as given by the surfactant param-

eter) and a preferred MS distance function the balance between the two may lead to

a length scale such that neither the average curvature is the preferred curvature, nor

the average MS distance function the preferred one.

If this is the case, the preferred and average distance function (and the preferred and

average curvature) are no longer the same, and the average squared deviations of d
from the preferred distance function value are a composition of hdi and �d, as ex-

plained below.

For the assessment of homogeneity in terms of fluctuations around hdi, however, we

show that the behavior is qualitatively similar for the two different normalisations.

This demonstrates that our conclusions are not an artifact of the normalisation.

Preferred chain length not necessarily the average chain length

A reasonable model for chain stretching contributions to a toy energy functional is

likely to penalise deviations of the chain length from a preferred chain length l0 and

not from the average chain length hdi. In a system where the length scale is set by

7For this normalisation which may be argued to be the most physically relevant, no data is presented
here. The curvature data is readily available, though, from the parameterisations in [66].

8Note that the relation between chain length and channel radius is not a trivial one in lipid or surfac-
tant/oil/water self-assembly: It is only trivial in a system of type I with the additional constraint that
the hydrophilic phase/film is assumed to be of constant (possibly vanishing) thickness, see Fig. 5.4. The
concept is much more applicable to self-assembly of block co-polymer phases.
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the preferred chain length the two lengths are equal, hdi = l0. In a system where the

length scale is set by a different mechanism, the two lengths are in general different.

For example, if chain stretching is considered as a correction to a bending energy

functional, the length scale of the system adjusts to minimise the bending energy and

not the preferred chain length.

However, even if hdi 6= l0, the data supplied is sufficient to compute the stretching

contribution Es in a simplistic harmonic model,Es / ZS(d� l0)2 = h(d� l0)2iA: (6.1)

Here h:i denotes area-weighted averaging over the surface S and A is the total area ofS. One obtains,
(d� l0)2� = D[hdi+ (d� hdi)� l0℄2E= D((hdi � l0) + (d� hdi))2E= 
(hdi � l0)2 + 2 (hdi � l0) (d� hdi) + (d� hdi)2�= 
(hdi � l0)2�+ h2 (hdi � l0) (d� hdi)i + 
(d� hdi)2� (6.2)= (hdi � l0)2 + 2 (hdi � l0) (hd� hdi)i| {z }=0 +h(d� hdi)2i= (hdi � l0)2 + (�d)2
This result demonstrates that consideration of �d has to go alongside consideration

of hdi which is a quantity that changes as a function of the geometry in the sequence

of members of a surface family, see for example Figure 6.2.

We refrain from further analyzing the IPMS in terms of this result, as it is not a purely

geometric property of the surface, but depends on the specific details of the actual

system. It highlights one of the biggest obstacles of free energy calculations for liquid

crystalline systems, namely that the length scale is set by competing forces.

Fluctuations of d for the rPD, rG, tG and tD surfaces

Figs. 6.2 and 6.3 show data for the (area-weighted) average distance function valuehdi, as defined in eq. (5.2), the standard deviation �d = ph(d� hdi)2iof the distribu-

tion of d for the tD, tG, rG and rPD surface families. The data summarises the two
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normalisations of the length to constant V=A or constant hdi for all members of the

families.

In terms of the fluctuations of the distance function around its average, the distributions

show clear minima at the cubic Gyroid and Diamond, along all families. The Primitive

surface is an inflection point of these variations along rPD family9.

For the tG family, the behavior of �d is very simple: �d(�0) exhibits a clear minimum

at the cubic Gyroid ('0 = �=4). From there it monotonically decreases to its two

limiting members at '0 = 0 (congruent to the tD family member for r0 � 0:43) and'0 = �=2 (saddle tower). Both of these retain finite periods in all dimensions, hencehdi=(V=A) and �d finite.

Similarly, in the rG case, the cubic Gyroid ('0 = �=3) is a deep global minimum of �d,

and the limiting members at '0 = �=2 (saddle tower) and at '0 = 0 (congruent to the

rPD surface at r0 � 0:49472) both have finite hdi and �d.

Both of these emphasise, again, the robust homogeneity of the cubic Gyroid. Among

its deformations analyzed here the cubic Gyroid clearly represents the most homoge-

neous IPMS in terms of packing.

The functional form is most interesting for the tD and the rPD case, due to their lower-

periodic limit cases. For the tD, the cubic member (at r0 = p2�p3 � 0:51764) is

again a minimum of �d, from which �d rises in both directions. However it reaches

maxima at r0 � 0:83 and r0 � 0:39. The latter one is very close, but at slightly smallerr0, to the tG junction at r0 � 0:43188. Beyond these maxima, the fluctuations �d
decline.

In the limit r0 ! 0 the tD surface becomes the 1-periodic helicoid. s(r0) = hdi=(V=A)
declines from near 1.3 at the cubic member to (an extrapolated) 1.

With the interpretation of s as an average shape parameter, this corresponds well

to the intuition that the helicoid is a double staircase with a ribbon-like MS that is

stairwell-like as well, offset by � in phase. The MS structure and the distribution ofd needs to be confirmed for the helicoid and the catenoid, and can probably be done

analytically. Note that the helicoid still retains in-surface two-folds, is balanced and

has two congruent MS.

9judged from analysis of higher resolution data, up to 5000 triangles in the unit patch, in the vicinity
of this cubic member. However, the possibility of a very shallow minima cannot be excluded

10The rPD can also be embedded, as a non-oriented surface, in the space group R3
 of the rhombo-
hedral Gyroid [66]. The data shown (and this only affects the crystallographic axes) is for precisely this
space group, as we had parameterised the rPD using the formulae of the rG. To fit into the real oriented
space group R3m of the rPD, the 
=a ratio increases by a factor of 2p2. For the space group of the
non-oriented rPD, this factor is

p2.
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Figure 6.2: Fluctuation and average of the MS distance function for the members of the tG

and tD surface families. Shown, as functions of the parameters of the surface families, are the

standard deviation of distribution of MS distance function values (top), the average of that

distribution (middle), and the corresponding crystallographic parameters a and 
 in the space

groups I4122 and I41=amd for the tG and tD, respectively (bottom). The asymmetric patches

of the surfaces are sampled by approximately 2500 (tG) and 1200 (tD) triangles. The x-axes are

the same within each column.
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distribution (middle), and the corresponding crystallographic parameters a and 
 in the space

groups R32 and R3
 for the rG and rPD11, respectively (bottom). The asymmetric patches of

the surface are sampled by approximately 2500 (rG) and 1000 (rPD) triangles. The x-axes are

the same within each column.
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The other limit, r0 ! 1, is also accompanied by a steady decline of s towards ap-

proximately 1 and terminates in a saddle-tower. The MS consists in increasingly wide

ribbons with increasingly flat distance profiles, reminiscent of a stacking of crossed

lamellar ribbons.

Instability of the Primitive surface

The functional form of �d of the rPD surface family exhibits a clear minimum at the

cubic member corresponding to the diamond surface (r0 = p2). Somewhat unex-

pected, the Primitive surface (r0 = 1=p2) corresponds to an inflection point. Hence,

there are rhombohedral deformations of the cubic Primitive surface that are more

packing homogeneous than the Primitive surface itself. The maximum of the fluc-

tuations actually corresponds to a surface very close to the rG surface family member

that is part of the rPD family (with r0 = 0:49472).

Definitive assessment of whether the cubic Primitive surface corresponds indeed to

an inflection point of �d, or rather to a very shallow minimum, is difficult. We have

collected additional data, spaced at closer intervals and with higher resolution. The

noise in the data is too large to make a clear decision. However, we believe it is an

inflection point; if it is a minimum its depth is smaller than the symbol width of the

data points.

In the limit r0 ! 0, the rPD becomes the aperiodic catenoid. In this process, the

surface loses its in-surface two-folds, is no longer balanced and has two distinct MS.

It is evident that one side of the MS is a flat plane with a circular hole punched out with

radius equal to twice the radius of the catenoid at its constriction (the MS point must

correspond to the center of curvature). The other MS degenerates to the rotational

axis. The MS structure of the rPD for r0 = 2:25 in Fig. 6.6 already precludes these

features, with thin vertical (almost degenerate) lines and flat horizontal pierced layers.

Implications for possible transition pathways

We conclude this section with speculation on the likelihood of transitions from the

cubic Diamond surface to the cubic Gyroid surface. The surfaces discussed here of-

fer two alternative routes between the Diamond and the Gyroid: D – rPD – P – rG

(rhombohedral) or D – tD – tG (tetragonal).

Fogden and Hyde have already shown that the cost incurred by curvature hetero-

geneity along the tetragonal path is small. We have shown here that this transition
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also involves smaller packing homogeneity than the rhombohedral path. Along the

former, the fluctuations �d and the deviations of the average shape parameter s from

the approximate cubic 1.3 are small, in particular smaller than along the rhombohe-

dral path. Thus, both local and global homogeneity favour a tetragonal pathway over

a rhombohedral one.

6.3 Detailed description of some IPMS families

This section describes the geometry and shape of the MS and the geometrically cen-

tered line graphs of the tD, tG, rPD and rG families. The transitions of the MS are

illustrated, and described in terms of the changes to the set of critical points of the

Euclidean distance map (EDM) as their positions are11 descriptive of the structure of

the line graph.

Geometrically centered line graphs are computed by tracking ridge lines on the MS

of the EDM D, starting from saddle points eventually leading to maxima (possibly

via other saddles), see chapter 3 . The surfaces analysed in this chapter provide the

main evidence for our conjecture that labyrinths bounded by hyperbolic periodic sur-

faces have unambiguously defined line graphs: The domains and their line graphs are

homotopically equivalent for all surfaces analysed here.

We note that homotopic equivalence does not exclude interesting transitions between

different coordination numbers at the nodes. Indeed, apart from the tD surface, we

do observe such transitions for all families.

All crystallographic coordinates in this chapter refer to the space groups of the ori-

ented surfaces as given in Tab. 4.2 in Chapter 4.

6.3.1 The tD surface family

The tetragonal distortion, i.e. stretching along the vertical four-fold rotation axis, of

the cubic Diamond surface yields the tD surface family described in chapter 4.5.4. This

family comprises the cubic Diamond surface as one of its members; another member

is congruent to a member of the tG family.

The evolution of the MS as the free parameter r0 is varied from 0 to 1 (shown in

Fig. 6.4) clearly illustrates the changes in the character of the surface. The length scale

11More precisely, “turn out to be”, as these properties cannot be assumed a priori
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tD surface patch shown is exactly one half of the translational unit cell in the I41=amd space

group and the portion of MS shown is a little more than one translational unit cell.
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is normalized such that the crystallographic parameter a remains constant.12 Yellow

spheres are saddle points of the Euclidean distance map D, blue spheres are maxima.

The black lines are the line graph as defined in chapter 3.

For all r0 the crystallographic coordinates of maxima and saddle points of the Eu-

clidean distance map D remain the same. Maxima are at 4m2 (4a), saddle points are

at 2mm: (8e). The topological structure of the graph remains constant as well, in the

sense that the same saddles are connected to the same maxima. Note that this could

not be expected (a priori), and is, in general, not the case; see e.g. the analysis of the

rPD family.

For small r0, the MS resembles a checker-board pattern of wide ribbons in x and y

directions, with alternating z-coordinates. Each (a=2)2 patch of the ribbon connects to

its two upper neighbors at z + 
=4, in �y direction, and to its to lower neighbors atz�
=4 in�x direction. The MS exhibits no cusps. The MS is essentially a topologically

complex lamellar division of space into horizontal layers.

Maxima are normal MS points: the two corresponding points on the surface are on

the same vertical axis, above and below (point 0 in Tab. 4.3). Saddle points of the

Euclidean distance map D, located on the :2: axes, are normal MS points as well.

For arbitrary r0, they do not correspond to the flat points of the surface, but to other

surface points in the vertical mirror plane. The flat points at 8e, in the mirror planes,

map onto MS points on the line graph edges. Only in the r ! 0 limit is their image

the saddle point of D.

The line graph follows planar curves (x; 0; z(x)) and (0; y; z(y)) contained in the global

mirror planes. They are not, however, straight lines.

As r0 (and 
) increases the cross-sectional shape (at the edge centers) becomes more

and more circular. For r0 > 0:4 � 0:1, the MS exhibits small “sails” that span the two

opposite line graph edges emanating from a node – either both going up or down.

As a consequence the points on the surface corresponding to the the maximum are

no longer vertically above and below the maximum, but points on the graph edges.

There are also four corresponding surface points instead of two.

The sails extend further towards the saddle points of D as r0 increases further. Even-

tually, the saddles of D cease to be normal MS points.

For r0 = p2�p3 � 0:518, the corresponding tD member is congruent to the cubic

Diamond surface. At that point, the angles subtended by the edges emanating from

12The crystallographic parameters refer to the space group I41=amd of the oriented surface. With the
parameterisation given in chapter 4.5.4 a and 
 increase monotonically as r0 varies from 0 to 1, with a
remaining finite and 
!1 at r0 ! 1. The ratio 
=a increases monotonically, with 
=a!1 for r0 ! 1.
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the nodes are identical and tetrahedral. The sails between two opposite edges (point-

ing both upwards or both downwards) are now identical to the sails between two

neighboring edges, one pointing down and one up (See chapter 5 on the MS of the

cubic IPMS for more details on how the sails join near the saddle points of the EDMD).

The edges of the line graph are straight lines, and correspond to the cubic three-fold

rotation axes. The flat point on the surface corresponds to the maximum of D.

Upon further increase of r0 beyond the cubic case the vertical sails expand and start

forming ribbon-like sheets in the mirror planes in x and y direction. The other sails

shrink towards the maxima, and merely form transition structures between the per-

pendicular ribbons.

The maxima of D still correspond to points on the mirror planes, and have more than

two corresponding surface points. The saddle points of D are the images of the sur-

face points at sites 222: (4c)in the non-oriented space group, on the same horizontal

two-fold axis :2: as the saddle points (point 3 in Tab. 4.3).

For large r0, the MS of the tD surface family consists of a vertical stacking of parallel

sets of ribbons (with normals pointing in x or y directions) of height 
=4 with spacing

between two neighboring parallel ribbons equal to a. The orientation of the parallel

ribbons alternates from stack to stack. The connection between two perpendicular rib-

bons has almost shrunk to a point, although, in detail, the transitions are still formed

by the sail-like arrangement.

Note that the line graph continues to zig-zag from saddle point to maxima – across

the ribbons. This may seem counter-intuitive to the notion of a network representation

given the fact that the ribbons contain straight lines in x or y direction that could be

interpreted as channels. This again demonstrates the importance of a robust definition

of labyrinth skeletons.

6.3.2 Tetragonal distortion of the Gyroid surface

The tetragonal distortion, i.e. stretching along the vertical four-fold rotation axis, of

the cubic Gyroid surface yields the tG surface family described in chapter 4.5.5. This

family includes the cubic Gyroid surface as one of its members. The end points of this

family are part of the tD and tP surface families, respectively.

The tG family comprises members with different coordination numbers of the line

skeletons. The end point on the tD surface is four-connected whereas the cubic Gyroid

and the other end point on the tP family are three-connected. The transition of the line
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graph is somewhat different to the idealised picture of two connected three-nodes

forming a four-node by virtue of the connecting edge vanishing: in the tG case, two

adjacent three-nodes each split into normal points (two-nodes) making the center of

their connecting edge a four-node.

The evolution of the MS and the line graph, as the free parameter '0 varies from��=2
to 0, is shown in Fig. 6.5. Symmetry positions refer to the space group I4122 of the

oriented tG surface. In the following, saddle (or monkey saddle, minimum, maximum)

denotes a saddle (or monkey saddle, minimum, maximum) of the distance function d,

defined on the tG surface or its medial surface.

The tG member for '0 = ��=2 is congruent to the member of the tP surface withr0 = 1. In that limit, the tG surface is essentially an array of vertical tubes with

rounded, nearly square cross-section, where diagonal neighbors are connected by hor-

izontal periodic small and nearly circular holes.

The MS (on either side of the surface) is a collection of planar surface patches, con-

tained in the diagonal mirror planes (of the tP surface). Four such patches meet

perpendicularly along vertical 41 screw axes through the centers of the tP channels

(e.g. [1=4; 1=4; z℄). The distance function d on the MS along these lines is constant, as

the corresponding points on the surface are parallel lines in the tP surface (e.g. [0; 1=4; z℄).
This value of the distance function is also the global maximum of d.

Medial surface patches penetrate the small holes connecting diagonal channels to each

other. Even there, the MS remains flat, fully contained in the mirror planes and of fi-

nite width, indicating deviations of the holes from circularity. The point at the center

of the holes is on the 8d two-fold axis (cyan straight line) and is a saddle point of d.

Along the vertical maximal 41 axes, the connections to diagonally neighboring chan-

nels are vertically offset by 
=4 relative to each other. Hence, the line graph nodes,

located where the straight and horizontal graph edges from the saddle point meet

these vertical lines, are three-coordinated with one horizontal and two vertical direc-

tions.

As '0 increases, but remains smaller than �(0:32 � 0:02)�, the MS structure becomes

more complicated. The 41 axes are no longer part of the MS; instead the MS “wobbles”

around it. The line graph now follows a helical line around the 41 axis. The distance

function on the MS (or Euclidean distance map) d is no longer degenerate in vertical

direction, but shows alternating maxima and saddle points along the vertical parts of

the line graph.

The MS patches penetrating the horizontal holes remain a single surface patch without

branch lines, although with a developing kink. The points at the center of the hori-

zontal holes remain saddle points of D. The line graph edges emanating from these



146 Medial Surface Analysis of continuous IPMS families

8d (::2)	
8f (:2:)	

41	

(c) '0=�0:26�

(b) '0=�0:38�

(a) '0=�0:49�

Figure 6.5: Evolution of the medial surface of the tG infinite periodic minimal surface.
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(f) '0=�0:07�

(e) '0=�0:21�

(d) '0=��=4(cubic Gyroid)

Fig. 6.5 (continued)



148 Medial Surface Analysis of continuous IPMS families

saddles do terminate at (a second, symmetrically distinct set of) saddle points on the

helical segments of the line graph (the small yellow spheres). The three-connected

nature of the line graph is preserved. The incident angles at the node continue to be�=2 and �.

Upon further increase of '0 beyond �(0:32 � 0:02)�, the line graph point on the 8d

two-fold axis becomes a maximum (big blue sphere) with two adjacent saddle points

(big yellow spheres) instead of a single saddle. The maximum (small blue sphere) on

the 8f two-fold axis remains. There are now two distinct saddle points of d and two

distinct maxima. The two types of saddles move towards each other, rather than one

of them moving and one of them staying fixed, as '0 gets closer to ��=4. The line

graph remains three-connected.

At '0 = ��=4 the tG surface becomes the cubic Gyroid. The two saddles (geometri-

cally distinct at lower values of '0) collapse onto a single point (on the cubic three-fold

rotation axis). The new saddle is now a “monkey saddle” of d, i.e. with three direc-

tions of increasing distance function. By virtue of the three-fold symmetry, all maxima

are now identical points.

The MS is now an assembly of flat triangles joined at the vertices (the maxima of D)

with the monkey saddles of d at the centre. See chapter on the cubic Gyroid for further

discussion.

The line graph is the Laves (or Y*) graph with straight edges that lie on the (additional)

two-fold axes.

If '0 becomes greater than '0 = ��=4, the line graph becomes four-connected. The

mechanism by which this split-up occurs is different from the standard picture where

the length of a graph edges goes to 0, effectively merging two three-nodes to form a

single four-node.

Instead, the monkey saddle splits up into two normal saddles that move towards the

two maxima on the 8f sites, away from the maximum at the 8d axis. The line graph

segment emanating from this saddle towards the maximum on the 8d site are (to the

best resolution we can obtain) geometrically distinct lines. The only coincidental point

is the maximum at their end points13.

Note that this drastic change in the line graph structure is not paralleled by an equally

drastic change in the MS. Apart from losing some symmetry (compared to the cubic

13Remember, as discussed on page 3.5 and in Fig. 3.10, that a node of a graph may be at a point
on MS that is neither a maximum nor a saddle point of d. Therefore the claim made here relies on
detailed analysis of the trajectory of the line graph segments connecting the saddles on the 8f axes to the
maximum at the 8d site. It is based on analysis of high resolution data; the trajectory has been verified
using increasingly small step sizes when tracing lines of maximal ascent on MS.
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case) its structure remains very similar.

At'0 = �(0:17�0:01)� the saddles collapse onto the maximum on the 8f axis, forming

a single saddle point at that site. The MS is now a single surface patch in the vicinity

of that point. Only one type of saddle and one type of maximum remain.

As '0 ! 0 the edges of the line graph approach the global mirror planes of the tD

surface family. The tG surface member for '0 = 0 is congruent to the tD surface withr0 = 0:43188.

6.3.3 The rhombohedral rPD family

The evolution of the MS structure and of the line graph of the rhombohedral rPD sur-

face family is interesting despite the fairly high symmetry. The line graph undergoes

a transition from six-connected to four-connected nodes. It also turns out to be an ex-

ample where the images ms(p0) of the flat points p0 2 S do not correspond to nodes

of the line graph. Analysis of the rPD medial surface also helps to elucidate the MS

branch line structure of the cubic Primitive and especially the cubic Diamond surface,

see Fig. 5.7 and Fig. 5.8.

Four special members of the rPD surface family are distinguished: r0 = 0 is the heli-

coid and 1-periodic, r0 = 1=p2 is the cubic P, r0 = p2 is the cubic D and r0 ! 1 the

catenoid (note that these points are pairwise adjoints of each other).

In the limit r0 = 0, the MS of the rPD is the MS of the helicoid, i.e. a ribbon that

ascents like a spiral staircase around a vertical axis. For finite r0, e.g. r0 = 0:45 shown

in Fig. 6.6 (top left), the vertical rotation axis of the helicoid becomes a three-fold screw

axis (in Fig. 6.6 this is the 31 axis). The MS still retains its ribbonlike character, i.e. it

has no branch lines.

The nodes are six-coordinated with vertical MS normals on three-fold axes. They

are clear maxima of the Euclidean distance map D, and correspond to flat points on

the surface, vertically above and below the node. The second set of six flatpoints on

the surface, half-way along the edges of the spanning triangles, does not map onto

a node but to a point in between the saddle and the node. The line graph edges are

contained in the mirror planes, but are clearly curved. This is necessarily the case,

as they connect two MS points both with vertical normal direction but with different

z-coordinates to each other.

As r0 increases further, to ro = 0:65 the c-axis becomes larger relative to the a-axis,

and the MS develops a branched structure. The areas around the nodes are still flat

(and unfortunately not visible in the picture), but a branching structure develops that
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31 screw axis

�

Figure 6.6: MS structure of the rPD surface family for the values (from top left) r0 = 0.45, 0.65,1=p2 (P), 0.85, 1.05, 2.25
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turns into the MS of the cubic P surface. Around the nodes, there are two vertical

“openings” of the MS (the top one is bounded by the horizontal flat patch and three

diagonal sails related by the 3-fold symmetry) and six horizontal openings, related by3 symmetry around the node, which extend to the boundary of the flat patch (and do

not reach the 3-fold axis). The images on the MS of the second set of flat points move

closer to the nodes (The area around the nodes is still flat, as the distance between the

vertically aligned flatpoints is still larger than the distance from the other flat points

to the node). The line graph remains six-coordinated.

For ro = 1=p2, the rPD is congruent to the cubic P surface, with the distance from the

node to all 8 flatpoints identical and corresponding to the node on the MS. The two

vertical and six horizontal openings are now congruent, pointing towards the eight

corners of the unit cube.

Maximal 6-nodes turn into two non-maximal 4-nodes at r0 = 1=p2
As ro (and 
=a) increases further, e.g. r0 = 0:85, the vertical distance between the 3
sites and the vertical flatpoints becomes larger than the distance from the other six

flat points to the 3 site. As a consequence, the two vertical openings no longer extend

to this site, and the six horizontal openings develop a common branch line along the

3-fold axis.

Up to a certain r0 > 1=p2, the 3 sites remain the only maxima of D, and the common

point at of the top-opening with three of the horizontal ones (the new node) a normal

point of D.

Even though the image of the vertical flat points is not a special point of D, the line

graph passes through it, as it comes from the 2m sites, and turns sharply onto the

3-fold axis. As three diagonal edges meet here, this point is a 4-node of the line graph

without being a maximum.

Upon further increase, the four-nodes move further apart. The images of the six non-

vertical flat points move closer towards the graph nodes along the three-fold, away

from the 3 site. The four-nodes turn into maxima of D. Yet, the 3 sites remain maximal

points as well, and a new saddle point of D is created on the three-fold, in between 3
and the nodes.
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The cross-over of the cubic Diamond MS between nodes seems sensible in the se-

quence of the rPD members

As r0 approaches
p2 and the rPD the cubic case, the MS shrinks near the midpoint on

the edge, and grows near the nodes. Yet, it retains its structure even at the cubic case;

it does not shrink to a point.

In the context of this transition, the peculiar shape of the MS of the cubic D makes

more sense.14

Upon further increase of r0 beyond the point of maximal 
=a ratio at r0 = 2:02134.

The top and bottom opening becomes flatter. The MS becomes thinner around the

vertical three-fold axes approaching the rotational axis of the catenoid to which the

rPD eventually converges. The other MS patches become more horizontal, slowly but

steadily approaching the outer MS shape of the catenoid, the pierced horizontal plane.

The 3 points become proper saddle points of D. The angles at the four-nodes of the

line graph approach �=2 and 2�=3, respectively.

6.3.4 The rombohedral Gyroid family

The rG surface family, parametrised with a free parameter '0 2 [��=2; 0℄, results from

a “stretch” of the cubic Gyroid along one of the sets of three-fold axes. For '0 = 0 it

corresponds to a member of the rPD surface family15; for '0 = ��=3 it is congruent to

the cubic Gyroid; and for '0 = ��=2 it is a representation of Karcher’s saddle tower

[110].

We show that the rG has a three-coordinated line skeleton – with two distinct types

of nodes – for all finite values of '0, but a six-coordinated endpoint, '0 = 0 on the

rPD surface. However, the evolution features, at the cubic Gyroid, a simultaneous

annilation of one type of three-coordinated node and creation of a different type.

Our analysis is presented with respect to the space group R32 of the oriented surface.

An illustration of the evolution is presented in Fig. 6.7. On the left, a portion of the rG

surface is shown, with one side colored orange and the other blue. A portion (more

than the MS corresponding to the portion of the surface shown) of the MS is shown in

green. The black lines are the line graph as defined in the previous chapters, yellow

14Upon initial inspection of low-resolution data of the cubic case only, we believed it to be an artefact
of insufficient resolution.

15This member is, in terms of the free parameter r0 of the rPD surface, not intermediate to the cubic
Primitive and Diamond surfaces. Whereas the parameter corresponding to the cubic cases is r0 = p2
and r0 = 1=p2, the end point of the rG surface corresponds to the rPD surface with r0 = 0:4947. The
diagram in Fig. 6.1 is slightly misleading in that sense.
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spheres are saddle points of the Euclidean distance map D and blue spheres maxima.

The three vertical gray lines are three-fold rotation axes, and the horizontal red and

purple lines are the two-fold rotation axes 9d and 9e, respectively.

On the right, the line skeleton and the critical points are shown together with the

rotation axes and an additional three-fold screw axis (green) but without the surface

or the MS. The graph and the critical points are projected onto the white horisontal

square. For clarity, the horizontal directions of the two two-fold axes are also shown

on this square.

For all finite values of '0, one of the two three-coordinated nodes remains in the chan-

nels on the vertical three-fold axes; the angles between the three incident edges – with

horizontal tangents along (the red) two-fold axes at the node – is constant and 2�=3.

This node is a saddle point of Hopf-index �2, i.e. with three directions of increasing

and decreasing distance function, respectively.

The other node is a maximum for '0 > ��=3, a saddle point for ��=3 � '0 > ��=2
and a degenerate –along the vertical screw axes – maximum for '0 = ��=2. One of

the incident edges of this second type of node, emanating from the first type of node,

is straight along a two-fold axis. The other two are symmetry related by that same

two-fold rotation, and subtend an angle � between 0 and �=2 with the imaginary con-

tinuation of the straight edge along the two-fold axis beyond the node.

The evolution is most easily understood by starting from the cubic case, '0 = ��=3
and examining '0 ! 0 and '0 ! ��=2 separately. As discussed above, the cubic case

is the Laves graph (or “srs”) with saddle points of D at the three-connected nodes and

maxima of D at the center of the edges. The two types of nodes are symmetry related

by virtue of the additional – compared to R32 – two two-fold axes through the centers

of the edge.

When '0 decreases, the nodes on vertical 3-axes remain monkey saddles of D (big yel-

low spheres). All other three-coordinated vertices (the medium sized yellow spheres)

slide along the red 9e two-fold axes away from the nodes on the 3-axes. This results in

an increasing angle �, i.e. the angles at the shifted three-node now are � > 2�=3 and

two times (1 � �)�. The node becomes a normal saddle, Hopf-index �1. Along the

edge to the node on the vertical three-fold axis, an additional saddle of Hopf-index�1 emerges (small yellow spheres). The edge from the vertical 3-axes nodes to the

second type of three-coordinated node is horizontal, straight and fully contained in

the 9e two-fold axis. It connects a monkey saddle of D via a maximum and a normal

saddle to a normal saddle.

The second type of edge emanating from the shifted node terminates at a maximum

of D on the 9d two-fold axis (big blue spheres on the purple 9d axis). It is not straight,
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'0=�0:49�

'0=�0:35�

'0=��=3
Figure 6.7: Evolution of the medial surface of the rG infinite periodic minimal surface.
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9d

* 9e

'0=�0:012�

'0=�0:165�

'0=�0:315�

Figure 6.7 (continued)
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'0 = ��=3 (cubic) '0 > ��=3
(1� �)�

Figure 6.8: Illustration of the topological transition of the line graph of the rG surface family

at the member corresponding to the cubic Gyroid.

and upon application of symmetry, yields a spiral that revolves around the vertical

three-fold screw axes (green line).

This change in the line skeleton structure solely affects the geometry of the line skele-

ton but not its topology and connectedness.

As '0 decreases further, the revolution of the vertical elements of the line graph

around the three-fold screw axes becomes tighter and the relative variations of d (orD) along those lines smaller. Eventually, at '0 = �=2 these edges become vertical and

coincide with the screw axis. The distance function is then maximal along this axis

and constant. The screw axis are now at the center of large vertical channels of trian-

gular cross-section. One portion of the MS are three flat ribbons, running in vertical

direction, with the screw axis being the branch line.

The other portion of the MS is still a flat horizontal triangle centered at the three-fold

axes16. The point at its center remains a monkey saddle of D. The mid-edge max-

imum and saddle of D converge towards each other, but merge and form a single

saddle point only in the limit '0 = ��=2.

The line graph now has one type of node with three symmetric edges in a horizontal

plane subtending 2�=3 angles with each other, and another type where a horizontal

edge connects perpendicularly to a straight vertical line.

The other development from the cubic case, i.e. '0 increases from ��=3, features a

topological transition of the line skeleton.

Again, at least for all finite values of '0, the three-coordinated nodes on the three-fold

16Note that the set of three-fold axes shown in Fig. 6.3.4 yields the set of corresponding three-fold
screw axes upon rotation of �=3 around the vertical axis in the center of the axes.
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axes remain monkey saddles of D and 3-nodes.

For '0 just above the cubic case, e.g. '0 = �0:315�, the three-nodes that are not on

vertical three-fold axes split up into to normal saddle points (small yellow spheres),

symmetry related by two-fold rotation around the red 9e axis. Two types of maxima

exist: One is on the purple 9d axis in between two of the new simple saddles that is

not the node of the graph (big blue spheres). The other one is on the 9e a axis and

forms a node with three incident edges – two from the new saddles and one from the

monkey saddle at the 3-fold axis (small blue spheres).

The lines of steepest ascent from the normal saddles, in direction of the three-fold

axis, terminate at the maxima on the 9e axis. At the maximum, the angle between

the 9e axis and these lines is very small, suggesting tangency of both the two edges

and the two-fold axis. Two scenarios are possible: first, the two edges (from the two

saddles) only end in the same point but are geometrically distinct elsewhere. The

second possibility, which cannot be ruled out a priori as demonstrated in Fig. 3.10, is

that both lines coincide before the maximum and from there follow a common path to

the maximum.

Our analysis – with the caveat of limited, although very high, resolution in the imme-

diate vicinity of the maximum – suggests that the first situation is realised, i.e. the two

paths are geometrically distinct apart from their common endpoint at the maximum.

This implies that a true topological transition takes place at the cubic case: A three-

coordinated node splits up into two normal points, while simultaneously the points

at the centers of the adjacent edges becomes a three-coordinated node.

Geometrically, the new graph is not very “equilibrated” in the sense that the angles

of incident edges at the nodes are rather uneven – 2�=3 at the nodes on the three-fold

rotation axes, and � � �=2 and � a the second type of node.

As '0 increases further, the normal saddle points (small yellow spheres) move to-

wards the maximum (big blue sphere) on the purple 9d axis. Eventually, at '0 � �0:2,

coalesce with that maximum and form a single saddle on the 9d axis.

Simultaneously the other maximum (small blue sphere), now a three-node, moves

towards the monkey saddles on the three-fold rotation axes. For all finite values of '0
it remains a maximum and at finite distance from the three-fold axes.17

At '0 = 0, the maximum has been swallowed by the monkey saddle on the three-

fold axis, making that point a six-connected node of maximal distance function value.

17 The situation at '0 = 0:165 is an example that the line graph is, in general, not centered with respect
to the MS. The MS is almost ribbon-like and the line graph is not running along the middle of the ribbon
but rather on one of its two edges.
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Three curved edges descent and ascent, respectively. The rG surface displays the ad-

ditional symmetries of the rPD surface, in particular additional vertical mirror planes.

The line graph is contained in the mirror planes.18

6.4 Conclusion

The analysis of these surface families in terms of MS properties has demonstrated that

the MS construction, the construction of a geometrically centered line and the analysis

of the MS distance function provide a robust, non-trivial measure of labyrinth network

geometry and topology, unavailable by other techniques.

A caution for graph models

The line graphs undergo the expected topological transitions that symmetry alone

does not explain. However, the geometry and distance function values along the

graph segments evolves in unexpected ways. In particular, there are

(a) the four-nodes of the rPD surface where the node is not a critical point of the Eu-

clidean distance map D. The consequence of this is that the split of the six-connected

node to two four-connected nodes happens in two stages: first, the node splits into

two nodes with an edge connecting them but the maximum of the Euclidean distance

function remains at the edge center; second, the edge center becomes a saddle point,

and the two new nodes become maxima of the Euclidean distance function D. (b) The

transition of a three-connected graph to a four-connected graph in the tG eventuates

not by virtue of two neighbouring three-nodes merging, but by them individually

splitting apart. The edge center between them becomes a four-node with two pairs of

opposite graph segments with very small angle between them.

These cases elucidate the transition between generalised graphs (with curved edges)

of different coordination numbers. For the investigated IPMS, they clearly show that

changes in coordination number of the line graph incur strongly uneven geometric

arrangements of the incident edges – in sharp contrast to the picture of a split up of

four-nodes that is typically drawn.

18The result that this node is six-coordinated is clearly evidenced by our numerical analysis. The
possibility of graph edges being pairwise coincidental before the end point at this maximum – leading
to more nodes but three- instead of six-coordinated – can be confidently ruled out.
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For graph models in general this means that emphasis on the topological transition

between differently coordinated graphs, that constitutes by definition a sharp jump,

must be treated with caution. The situation where the transition from a most symmet-

ric 3-node (or n-node) to a most symmetric 4-node (or n-node) occurs is a ficticious

one, at least if the graph at all represents the geometry of a labyrinth (and if similar

results hold true for other space partitions).

Global homogeneity and average shape parameter

We have shown that the cubic Gyroid and Diamond surfaces minimises variations

of the MS distance function among their tetragonal and rhombohedral distortions.

This implies that they are stable structures if these fluctuations determine the energy

functional. For the cubic Primitive this does not hold true as there is at least one

deformation that leads to a more homogenous partition. Globally, the Gyroid is more

homogeneous in a packing sense than the Diamond which is more homogeneous than

the Primitive.

We have also shown that the variations of hdi=(V=A) (1:3 � 0:1 in the vicinity of the

cubic cases) are smaller than the variations in homogeneity �d, which are 0:05, 0:10
and 0:19 for the G, D and P surface, respectively, scaled to give constant V=A. This

implies that for these cases it is �d and not hdi that makes the bigger contribution to

the toy model Ef / (d� l0)2 for an energy functional.

The interpretation of these results in terms of mesophase assembly of surfactant mix-

tures is only straightforward in binary Type 2 systems. It is likely to be more relevant

to self-assembly of copolymer phases where the channel diameter is of increased rel-

evance.

Omissions and extensions

The analysis of this chapter is incomplete in a number of basic ways. The surfaces

analysed should at least include all known tetragonal and rhombohedral distortions

of the cubic IPMS, most notably the tP surface. Furthermore, the MS of the limiting

helicoidal and catenoidal cases lends itself to almost analytic computation. Hence, the

homogeneity properties of these cases could be computed with much higher precision

– especially desirable since these are aperiodic and 1-periodic cases where the analysis

needs to be extended to infinity.

As an extension, a similar analysis needs to be carried out on the other known families

of IPMS to get a better understanding for the relative strength of the fluctuations.
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Furthermore, if the surfaces are used as models for the transition behaviour between

mesophases it is not clear that vanishing mean curvature is a property of the non-

equilibrium phases. Therefore, extension to other hyperbolic space partitions is desir-

able.



Chapter 7

A non-cubic network in a triblock

copolymer blend

This chapter presents a MS analysis of the microdomain morphology of a linear tri-

block terpolymer phase, based on real space data from electron tomography. The

microdomain morphology, as characterised by the shape of the domain of one of the

three components (PDMS), consists in two intertwined, disjoint, identical, symmetric

and periodic channel networks with three- and four-connected nodes. The symmetry

of the network is orthorhombic and with a 
=a ratio distinctly larger than one – mak-

ing it one of the rare occurrences of non-cubic structures in systems that assemble in

hyperbolic labyrinths.

The MS analysis proves to be a useful visual tool by providing a succinct yet sparse

representation of the labyrinth that represents topology and geometry. Furthermore,

a statistical analysis of MS properties (distance function, MS normals) of the network

nodes provides evidence for the symmetry and periodicity of the network.

The polymer system is a linear triblock terpolymer made up of polystyrene (PS), Poly-

isoprene (PI) and polydimethylsilocane (PDMS).

A three-dimensional dataset of the PDMS phase is reconstructed from a tilt series of

transmission electron microscopy (TEM) images. These images only resolve PDMS in

contrast to PI and PS, but do not distinguish between PI from PS. After binarisation

and triangulation of the interface between the PS/PI phase and the PDMS phase, an

approximation of the MS inside the PDMS phase is computed, using distance and in-

cident angle to discern MS parts that are only due to noise. This makes the MS a set

of not necessarily connected triangles rather than a connected triangulation. This rep-

resentation of the MS is not good enough to detect geometrically centered line graphs

in an automated way. Yet it elucidates, both qualitatively and quantitatively, some of

the subtleties of the symmetry of the labyrinth. In particular, it clearly demonstrates
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that the four-nodes are four-connected, rather than being two nearby three-nodes con-

nected by short edges.

This chapter is organised as follows: Section 7.1 provides a short review of the ideas

behind self-assembly of co-polymers into hyperbolic network phases. Section 7.2

summarises sample synthesis, electron tomography imaging, and the MS computa-

tion. Section 7.3 contains a detailed discussion of symmetry, periodicity, shape and

connectivity of the MS and the topological graph as deduced from the data. A discus-

sion and summary is given in section 7.4.

7.1 Network phases of block co-polymers melts

Block copolymers are polymers where sequences of one type of monomers (blocks) are

covalently bound to blocks of different types. The simplest example are AB diblock

copolymers where a sequence of monomers of type A is connected to a sequence of

monomers of type B. Triblock copolymers are made up of three different components

A, B and C, that can be joined linearly or star-like. The latter architechture generates

“mikto-arm” copolymers.

Block copolymers have been long known to self-assemble in solution into a number

of different mesophases if the blocks are immiscible (i.e. have a tendency to phase-

separate). This microphase separation is diven by chemical incompatibilities between

the different blocks of the copolymer molecules. As the entropy of mixing is small

in these systems, already a small chemical or structural difference between the com-

ponents suffices to produce excess free-energy contributions that make mixing unfa-

vorable. After evaporation of the solvent, a variety of mesophases result where the

particular form and shape depend on the temperature and on the relative weight of

the components.

These mesophases are characterised by the symmetry and topology of each microdo-

main (containing single block type). Similar to mesophase formation in surfactant/lipid-

water-oil systems, spherical, cylindrical, lamellar and bicontinuous structures are found

in AB diblock copolymer systems. However, in contrast to surfactant water systems,

it has been claimed that out of all bicontinuous structures, the only one observed is

the cubic Gyroid.
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7.2 Sample synthesis, e�- tomography, and MS computation

This section describes the synthesis of the sample, the acquisition of the spatial data

as a voxelised electron tomography dataset and the computation of an approximation

of the MS.

Sample synthesis by casting from polymer solution

The film specimen was prepared by casting from a 5 wt % polymer solution in toluene

at room temperature, with slow evaporation of the solvent over 20 days. The cast film

was used without annealing.

Using a Reichert Ultracut N ultramicrotome thin sections of the film were cut at �65o
to �80o Celsius.

The copolymer was synthesised by Panagiota Fragouli and Hermis Iatrouthe within

the group of Nikos Hadjichristidis at the University of Athens.

The triblock copolymer sample considered here is not amenable to mesostructural

analysis by standard techniques, such as small angle X-ray scattering, due to the small

domain size detected in electron microscopy. Therefore, 3D electron tomography is

the best route to determination of the mesostructure.

3D electron tomography datasets with nanometer resolution

Electron tomography is the reconstruction of a three-dimensional structure from a tilt

series of transmission electron microscopy (TEM) images [204, 72, 73, 128, 106]. The

data analysed in this chapter is obtained from electron tomography and was recon-

structed from a series of projections with tilt angles (around a common axis in the

plane of the sample) ranging from �60o to 60o with 1o increment between successive

projections. Because of the presence of silica atoms, contrast in transmission between

the PDMS phase and the other two phases exists (but none between the PI and the PS

phase). Energy filtering was used to obtain the zero-loss image that provides better

contrast and resolution. TEM micrograph images were taken with a magnification of

25000, corresponding to a voxel size of 0.834 nm in the 3D reconstructed images.

A number of methods are used to investigate three-dimensional spatial structure on

the nanometer-scale. Traditionally, the most common 2D microscopy techniques are

scanning electron microscopy (SEM) and transmission electron microscopy (TEM)

both of which provide images of surfaces, or ultra-thin sections. Volume imaging

by serial slicing can produce 3D images (of materials that can be sliced into thin



166 A non-cubic network in a triblock copolymer blend

slices) with approximately 20-50 nm resolution [199, 76]. Nanotomography, based on

successive stripping of thin layers and simultaneous imaging by scanning tunneling

microscopy, has been shown to yield resolutions of about 10 nm and has been suc-

cessfully applied to block copolymer systems [145]. Laser confocal microscopy yields

resolution of the order of 100 nm and can only be applied to optically transparent

materials, see for example [216, 105] for an application to polymeric systems. By com-

parison, the resolution of conventional X-ray tomography systems is approximately 2�m for conventional X-ray tubes [180] and 0.2 �m for synchrotron radiation [150].

The reconstruction of the 3D image from the tilt series is the inversion of the projec-

tions of the 3D structure onto the planes given by the sequence of tilt normal. Details

on the so-called filtered back-projection algorithm (for parallel beams) used here can be

found in the computer-tomography books [89, 109, 93], or more specifically about the

implementation in [74].

Data collection and reconstruction was done at Kyoto University (Japan) by Satoshi

Akasaka and Hirokazu Hasegawa. A JEOL JEM-2010FEF electron microscope equipped

with an omega filter was used at magnification factor 25000. The accelerating voltage

of the TEM was 200 kV, and a Gatan slow-scan CCD camera was used for the image

data collection.

An energy filter was used to extract the zero-loss image, �E = 0. Zero-loss images

result from elastic electron collisions only. That is, only the fractions of the incident,

transmitted and scattered electron beams that have the same wavelength are used.

Zero-loss images are similar to conventional TEM images but are sharper and have

higher contrast, as the inelastic scattering that produces chromatic aberration is elim-

inated [52].

7.2.1 Segmentation, volume fraction and triangulation of the interface

The tomographic reconstruction yields a 3D gray-scale dataset where each voxel is

assigned a number that, in principle, corresponds to its density. The ideal situa-

tion, where each voxel adopts one of three values corresponding to either phase and

where there are sharp transitions at the interface between two phases, is usually not

achieved. At the least, the interfaces are blurred due to noise, finite sampling size,

misalignments and reconstruction artifacts due to real inhomogeneities in the phases

[93]. More often, the intensity function only converges to the bulk value of a specific

phase deep inside that phase, far away from an interface. The process of turning the
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gray-scale image into a binary image1, where 1 corresponds to the PDMS phase and 0

to the union of the PS and PI phases, is called segmentation or binarisation. The volume

fraction of the first phase, as represented in the binary dataset, is trivially computed

as the number of voxels with intensity 1 divided by the total number of voxels.

The simplest segmentation scheme is based on a level-set segmentation, i.e. all voxels

with intensity I < I
 are assigned the value 1, all others the value 0. The thresholdI
 is a parameter that can be tuned and determines the volume fraction. The volume

fraction of the first phase monotonously increases as the threshold value I
 goes up.

The problem with this segmentation process is its great sensitivity to noise, which

leads to ragged interfaces and large numbers of small isolated clusters of one phase

within the other.

Alternative and more sophisticated segmentation schemes have been derived based

on propagation of an initial interface under a speed function [114, 146, 26] or by using

the concept of watershed [211]. The segmentation applied to the dataset here is a com-

bination of these ideas, called converging active contours segmentation, and is described

in [194]. Note that with this technique the volume fraction is not an input parameter

of the segmentation, rather the binary output data set is an optimal segmentation.

The processing of the gray-scale dataset consists in the following steps in this or-

der: (1) sharpen edges using the unsharp mask filter [170] 2; (2) noise reduction via

anisotropic diffusion [166, 1]; (3) converging active contours segmentation [194]; (4)

triangulation of the interface using marching cubes [137]; (5) decimation and smooth-

ing using routines from the vtk library 3.

The volume fraction, as measured in the image segmented with the converging active

contour method, is 12% for the complete data set. This is lower than the volume

fraction of approximately 19 % expected from the the composition of the mixture.

Differences between likely and actual volume fractions can occur for various reasons:

first, the data set contains large regions of poorly resolved structure. Second, as is

described later we find that the channel system geometry suggests that some parts of

the PDMS phase are not represented in the binary image, whereas we detect fewer

regions where the data shows channels that are should not be if the assumed model

is correct. This leads to an overestimation. Third, the total extent of the data is only

about 1.7 translational unit cells in the c-direction.4 If the size of the data of a periodic

1In this specific case, the image could be turned into a ternary dataset. Since we do not aim to (and
cannot without staining of the sample) resolve the PD and PS phases individually, we convert the dataset
to a binary dataset.

2See also the GNU image manipulator manual, www.gimp.org
3See the Vizualisation Toolkit homepage: www.vtk.org
4This refers to the smallest unit cell possible, which is a monoclinic. Of the body-centered Imm2 unit
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system is not an integer multiple of the translational unit cell, the volume fraction of

the data set may not correspond to average volume fraction of the sample.

A triangulation of the bounding surface of the PDMS phase, referred to as the labyrinth,

is obtained from the segmented (binary) dataset using the isosurface and smooth-

ing function of the vTK library. In an additional step, the resulting triangulation is

smoothed using the “Smooth” operation of the Houdini visualisation software5.

The dataset to which the remainder of this chapter refers is a subset of the complete

dataset. First, roughly 10% in each linear dimension, for which the MS is not defined

as a consequence of the boundary, are removed. Second, half of the sample is not

considered as it appears to have been bent macroscopically (as is revealed by a deter-

mination of all maxima of the MS distance function maxima that clearly lie on a lattice,

one side of which is distorted). The size of the remaining subset is 180 � 130 � 180
in units of the voxel edge length (150 � 101 � 150nm3). The (smoothed) triangulation

of the PDMS labyrinth’s bounding surface consists in approximately 1:3 � 105 trian-

gles with an average edge length of 1.8 and standard deviation of the distribution of

edge lengths 0.8. The sum of the areas of all triangles (an approximation of the total

interface area) is 1:77 � 105voxel2 (1:23 � 105 nm2).

7.2.2 Medial Surface computation

An approximation to the MS of the channels is obtained by Voronoi-based methods

that take as input a triangulated representation of the bounding surface of the PDMS

phase. A subset of the Voronoi diagram is used to approximate the MS. This subset

consists of all Voronoi faces with incident angle for which the face normal (an approx-

imation of the MS normal, and assumed to be pointing into the Voronoi cell) and the

vector from the surface point to the pole (that vertex of the Voronoi cell CV (p) of a

vertex p of the surface triangulation that is furthest away from p and inside the chan-

nel) form an angle no greater than a threshold angle �MS . This threshold is chosen

as �MS = 60o. This procedure is somewhat reminiscent of the approach presented

by Dey and Zhao [42]. It yields a sufficiently good representation for the analysis

presented in this thesis.

cell used later, only about 0.8 of a lattice translation in c-direction is resolved.
5Houdini is a commercial 3D rendering and animation software package. It allows for very versatile

transformations of triangulated surface data. See the web page of its producers: www.sidefx.com.
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7.3 Medial Surface and Channel Geometry

This section describes the spatial structure of the channel network of the PDMS phase

as derived from analysis of its MS. The MS is ribbon-like throughout (without branch

lines) and resembles (with some distinct differences) a straight-edge graph of flat rib-

bons. We derive a line graph model (with straight edges) from the MS representation

of the tomographic data. According to that model, the PDMS phase consists of two

identical intertwined networks of 8-rings and 3- and 4-coordinated nodes of nearly

orthorhombic symmetry. Further analysis of the MS (lattice directions and spacings,

distance function values and MS normals of particular points) provides evidence for

this claim. First, a description of the straight edge line graph is given as it is the easiest

to visualise and already a good structural model. Then the MS geometry and shape is

described.

Two intertwined (3,4) line graphs of orthorhombic symmetry

Our interpretation of the structure of the PDMS network, expressed as a line graph

with straight edges, is as follows: The PDMS phase consists of two identical, inter-

twined, symmetric and periodic networks with four-connected and three-connected

nodes (see Fig. 7.1 and Tab. 7.1 for an illustration).

These networks can be built from body- or face-centered symmetries depending on

the orientation of the unit cell relative to the network. The networks are related to

both Diamond and Y � graphs (the channel graphs of the Diamond and the Gyroid

surfaces, respectively). Splitting of every second layer of 4-connected Diamond nodes,

or fusion of a subset of the 3-connected Y � nodes, generates the 3- and 4-coordinated

graph (described by O’Keeffe and Hyde [163], Fig. 7.78, p. 359).

We choose, for convenience only, the body centered unit cell for the further description

of our analysis. One of these networks in that orientation in Fig. 7.1 is as follows:

In one of the two networks, called graph 1, four-connected nodes sit on the eight

corners and in the center (f1b ) of a body centered translational unit cell. The emanating

edges (two upwards and two downwards) connect to planar three-nodes, that reside

horizontally centered in the faces of the unit cell at [0; b=2; z℄ (t1
), or by virtue of the

body-centered cell [a=2; 0; z�1=2℄, (t1b) and [a=2; 0; z℄ (t1a), respectively. A vertical edge

connects the pairs of vertically aligned three-nodes, e.g. t1a to t1b .

Within the uncertainty of the available data, the second graph is geometrically identi-

cal to the first graph but oriented differently in space: The four 4-nodes of the transla-

tional unit are on the four vertical faces, and the vertical edges (and the three-nodes)
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Figure 7.1: Model of the line graph (with straightened edges) of the PDMS network as ex-

tracted from the MS. Shown here is a monoclinic translational unit cell that corresponds to a

tetragonal unitcell of the body-centered I4m2 spacegroup upon lifting of the symmetry. (Left)

Shown is one translational unit cell and the location of the four-nodes of the two separate

graphs marked as black and gray points, respectively. Numerical values for the lattice direc-

tions and angles are given in Tab. 7.1. The crystallographic a-axis coincides with the Euclidean

x-axis, and the b-axis is contained in the xy-plane. (Right) Shown are the two inter-penetrating

graphs 1 and 2 together with their six distinct nodes (two 3-nodes and one 4-node each). As a

visual aid, some lines along (100), (010) and (110) direction are shown as dashed, dash-dotted

and dotted lines, respectively.

are one the straight vertical lines 0; 0; z and 1=2; 1=2; z. Thus, the 4-nodes of the first

graph align vertically with the 3-nodes of the other.

More symmetric embeddings of this line graph in tetragonal unitcells

More symmetric embeddings of this graph exist. Discussing these helps to elucidate

the geometry and symmetry. This discussion is presented in Fig. 7.2 and in this sec-

tion.

The ratio between the lattice parameters of the body-centered unit cell shown in Fig. 7.1

is approximately 1:0.8:4.6 (a:b:c). The angles between the lattice vectors are � =80o � 4o (℄a; b), � = 90o � 6o (℄b; 
) and 
 = 85o � 6o (℄a; 
). The deviations from �=2
are only significant in �. We assume the symmetry group to be at least monoclinic (as
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Primitive lattice vectors of the I4m2 space group

in voxel(a) in nm in Euclidean coordinates of the dataset(b)a 43� 2 36:9� 2 (�0:986� 0:02;�0:050� 0:02;�0:157� 0:02)b 36� 2 30:0� 2 (0:338� 0:02; 0:080� 0:02; 0:938� 0:02)
 199� 2 166:0� 2 (�0:12� 0:02;�0:98� 0:02;�0:15� 0:02)z (
) 99� 3 82:6� 2:5 (�0:02� 0:01; 0:99� 0:01;�0:10� 0:01
Angles between relevant directions of the unit cell(d)� between a and b 80o � 4o� between b and 
 90o � 6o
 between a and 
 85o � 6ot between z and 
 6o � 5o� between projection of 
 onto the ab plane and b � 90o
Positions of the nodes in the translational unit cell

Node ideal experimental (e)f1b 1/2 1/2 1/2 0:37� 0:07 0:63� 0:07 0:50� 0:02t1a 1/2 0 z 2 [0; 1=4℄ 0:55� 0:08 �0:11� 0:06 0:13� 0:02t1b 1/2 0 z 2 [1=4; 1=2℄ 0:4� 0:1 �0:05� 0:05 0:40� 0:02f2a 0 1/2 1/4 0:04� 0:04 0:38� 0:07 0:25� 0:02t2a 1/2 1/2 z 2 [0; 1=4℄ 0:56� 0:05 0:42� 0:05 0:10� 0:02t2b 0 0 z 2 [1=4; 1=2℄ 0:00� 0:04 0:00� 0:04 0:36� 0:02t2
 0 0 z 2 [1=2; 3=4℄ 0:25� 0:07 0:32� 0:07 0:64� 0:02
Table 7.1: Positions of the 3- and 4-nodes in the experimental dataset in the notation in the

unitcell shown in Fig. 7.1. The assumed model for the connectivity of the nodes and the

idealised positions is given in Fig. 7.1. The space group notation is as in [85]. Superscripts in

brackets refer to Appendix 7.5 containing details of the fitting procedures.

two of the pairs of primitive vectors are perpendicular), with the likely possibility of

an orthorhombic cell. Indeed, the symmetry could lift the symmetry to a tetragonal

cell (a=b) without significant distortions.

This tetragonal network is precisely6 the network considered by O’Keeffe and Hyde

[163] with space group I42. Its formal description, with all edges of identical unit

length and all angles tetrahedral (4-vertices) or trigonal (3-vertices) is:

6With the minor exception that the coordinate axes a and b in O’Keeffe and Hyde are exchanged
compared to ours.
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f1a t1at1b f1b
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Imm2 with a=37; b=31; c=166;

4-vertex f1a : (0, 0, 0)

3-vertex t1a : (1/2, 0, 0.12)

3-vertex t1b : (1/2, 0, 0.38)

f1a t1at1b
f1b

F222 with adapted a; b ; c=166;

4-vertex f1a : (0, 0, 0)

3-vertex t1a : (1/4, 1/4, 0.12)

Figure 7.2: Graph 1, under the assumption of orthorhombicity, embedded in the Imm2 trans-

lational unitcell (left) and in the F222 translational unit (right).I4m2; a=1.8; c=3.744;

Net 1 : 4-vertices at (0, 0, 0) (f1a )

3-vertices at (1/2, 0, 0.3836) (t1a)

Net 2 : 4-vertices at (0, 1/2, 1/4) (f2a )

3-vertices at (1/2, 1/2, 0.1336) (t2a)

The two possible embeddings of this network in orthorhombic groups are in the body-

centered Imm2 space group, or the face-centered F222 space group – both for the

symmetry of one of the two networks only (shown in Fig. 7.2). The corresponding

symmetry groups containing symmetry operations exchanging the two networks areImma and Fddd.
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The symmetries of the two embeddings are clearly different, even though they give

the same line-graph. The clear distinction between the two space groups is that Imm2
has mirrors, the a = 0; 1=2 and b = 0; 1=2 planes, that F222 lacks. Vice versa, F222 has

horizontal two-fold rotation axes through the four-nodes in lattice vector direction ofF222. The line graph with straight edges has all symmetries of both groups, but the

MS does not.

Note that the orientation of the lattice vectors in the two space group is different. The

a-axis [100] of the Imm2 space group corresponds to half the face diagonal [110] of

the F222 space group. The c-axes of both space groups are identical.

The four-node is at the origin of the Imm2 space group and a mm2 sites. The two-

fold axis is along the c-axis and the mirrors in the horizontal unitcell faces. In F222 the

four-node is again at the origin. It has 222 site symmetry. The three two-fold axes are

along the crystallographic primitive translations of F222. In particular, F222 contains

two horizontal two-fold axis through the four-nodes, in [100] and [010] direction.

An important difference between F222 and Imm2 with respect to this graph, are the

positions of the three-nodes. Note that there are two symmetrically distinct three-

nodes in the Imm2 space group, t1a and t1b , whose 
 coordinates are not a priori fixed

(although in our data their respective 
 values are 1=4 � x). . In the F222 spacegroup

the two types of maxima are related by a two-fold horizontal two-fold rotation in the
 = 1=4 plane. The set of three-nodes in the translational unit is symmetry-related

in different ways for the Imm2 and the F222 spacegroups: in Imm2 by virtue of the

body-center translation, t
1 corresponds to ta1 and t
1 to td1. In F222, they are all at

equivalent sites, related by horizontal two-fold axes at 
 = 1=4; 1=2; 3=4.

The MS, as opposed to the line graph, does not share both symmetries. Its shape can in

principle distinguish between the two possibilities. This aspect is discussed on page

180. Before this we discuss the shape of the MS and our analysis of the periodicity of

the structure.

MS is ribbon-like and without branch lines

.

8Note that this is a projection of an array of half-unit cells with one layer of maxima, the layer of
upwards facing three-nodes above and the layer of downwards facing three-nodes below. Even if 
 was
perfectly vertical to a and b a larger number of layers would not produce the collapse shown here as
the bending of the MS “edges” is different in the respective layers. The projection is not along the 
 axis
either, but rather along the imaginary vertical axis a� b (the minimal requirement for a vertical two-fold
axis to exist). The slight crystallographic distortions are also the reason for the green three-nodes to be
slightly offset from the a-axis.
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Figure 7.3: MS of the PDMS network: (a, b) Smooth surface, manually adapted, to the MS

of half a translational unit cell of one of the two labyrinths in two different orientations. The

MS is essentially a ribbon structure. One side is colored orange, the other side green. The

second labyrinth is represented by its stylised line graph. The colored arrows represent the

MS normals of the nodes. (c) Vertical projection of the MS onto the (001) plane.8The dotted

four-gon is the F222 translational unit cell. (d) The same as a but showing the experimentally

determined MS rather than the stylised MS. (e) Close-up of the (experimental) MS portion

around one of the 4-nodes.
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The shape of the MS is illustrated in Fig. 7.3. We describe only one of the two MS only.

Our analysis does not detect any difference between the shape of the two MS, which

supports the symmetry assignment.

The MS is made up of ribbons of varying width that follow the line graph, with the

edges curved in space. The 4-nodes are on curved but simple surface patches without

branch lines from which four ribbons emanate. The MS here twists to accommodate

two ribbons going up (that eventually reach three-nodes in upwards�b direction) and

two going down (to the two adjacent downwards three-nodes in �a direction). The

MS is widest in the vicinity of the four-nodes. The four-nodes are clear local maxima

of the distance function with small fluctuations over the different four-nodes of the

sample.

In principle there may be two distinct types of three-nodes that are not related by

symmetry and hence may exhibit differences in the shape of the channels (and their

MS) in their vicinity. Out of the first class of three-nodes, called “three-downs” and

represented by green spheres (t2a), one MS ribbon emanates vertically downwards,

and two emanate diagonally upwards going to the four-nodes in �a direction. Out

of the nodes of the other class (“three-ups”, red spheres, t2b) one MS ribbon emanates

vertically upwards to go to a three-down, and two ribbons go diagonally downwards

to the four-nodes in �b direction.

Our analysis of the MS detects no significant differences in shape between the two

types of three-nodes, or in the relative position to the four-nodes and the unit cell. This

is an indication that the space group may indeed be one where a symmetry operation

exists that exchanges the two types of three-nodes. We can restrict our analysis to one

of the two saddle points.

The MS in the surrounding of the three-nodes is again a simple surface without branch

lines with three ribbons emanating from it.

The three-nodes are statistically weak maxima of the distance function on the MS.

The line graphs (geometrically centered, in the spirit of the discussion in chapter 3)

emanate from distance function saddle points on the ribbons to the adjacent four-

nodes. However, in some instances, they are monkey saddles (as in the cubic gyroid)

or not special points of d at all.

The MS patches connecting three-nodes to four-nodes are clearly ribbons, reflecting

the elliptic cross-section of the channels, wider in extent in 
-direction than in ab-

plane. Although these ribbons are not flat, their normals are mostly horizontal and

the MS patches vertical patches (see the distributions of �2 and �3 in Fig. 7.4 on page

179).

The MS patches connecting three-nodes vertically are more difficult to assess. This is
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mostly because their cross-section is more circular making the MS computation more

noise-sensitive. They are also thinner, therefore with a constant resolution of the raw

data, the sampling of the surface by vertices is worse.

It is clear though from consideration of their end points (the three-nodes) that they

represent a twist of the MS ribbon by an angle corresponding to the difference be-

tween the MS normals of the two types of three-nodes, i.e. �=2 or more (see Fig. 7.3,

in particular c).

None of the MS ribbons is flat even though the “end points” (a four-node and a three-

node) are contained in the same vertical plane (a = const or b = const). This is

evident in the projections of the MS ribbons in Fig. 7.3 (c). A two-fold symmetry

around vertical axes through the three-nodes seems to exist mapping adjacent four-

nodes (the end points of the ribbons) onto each other. This is consistent with both

potential space groups).

In the following we will use the shape of the MS to support our claim of a periodic

structure, and on page 183 to distinguish between the two possible symmetry assign-

ments, F222 or Imm2.

Periodicity of the network by analysis of the positions of 4- and 3-nodes

The periodicity of the structure is best quantified by statistical analyis of the four-

nodes, as they are the most distinct features of the MS of the PDMS networks. First,

they are the only local maxima of the distance function with values in the range4 < d < 7. Second, the MS structure (shape and orientation) in their vicinity shows

little variation between different realisations within the sample. We quantify this by

analysis of the MS normal directions and distance function values of the maxima.

Third, their positions in space clearly reveal an underlying periodic lattice, at least

in a and b direction, with small fluctuations of the data points around the nominal

positions on the fitted lattice.

All four-nodes are distance function maxima on the MS in the following sense. They

are the set of MS points with maximal distance function among all points within a

sphere of radius 10 voxels and with distance function value in the range [4; 7℄ voxels.

In other words, the subset of points on the MS with that property is essentially the set

of four-nodes, with the exception of very few (likely erroneous) points, all of which

lie in the poorly represented boundary region of the sample. In the following analysis

we denote as the “four-nodes” exactly this set of these maximal points. We will later

demonstrate that they indeed are four-connected nodes of the line skeleton.

The first observation is that the four-nodes lie on distinct planes, the 
 = 0; 1=4; 1=2
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planes in Fig. 7.1. Our data set contains three distinct sets of four-nodes on three

parallel planes, with the middle one, 
 = 1=4, containing points that lie on graph 1,

and the other two, 
 = 0 and 
 = 1=2, containing four-nodes of graph 2. The plane

normal directions of the individual planes, as determined from linear least square fits

of a plane equations ni � x = di to the data points of each plane, differ by an angle

of less than 1 degree from their average, i.e. they are parallel within the limits of our

analysis. The distances between them are d = 48 � 3 voxels, as determined by a

renewed least square fit to the plane equation n � x = di where n = hnii is the average

normal direction. The error is the standard variation of the distribution of vertical

distances of the sample points from the corresponding planes.

The coordinate axes a and b, in the Imma space group with one of the maxima as the

origin, are the visually immediately evident straight lines (through these maxima) that

are contained in the three parallel planes. The average directions of the straight line

fits to aligned subsets of four-nodes yields the coordinate directions, given in Tab. 7.1,

with small errors corresponding to the deviations of the data points from the fitted

lines.

Analysis of the spacing between data points along these straight lines gives the trans-

lation lengths, again with small deviations.

An analysis of the positions of the three-nodes yields the same result within the error

specified. However, the analysis is more difficult as the identification of the three-

nodes is not as easy as for the four-nodes. Our data is not sufficient to ascertain if

the three-nodes are maxima of d or saddles with Hopf-index �2 (“monkey saddles”).

Furthermore, their distance function, approximately 2 � 1, is much closer to the dis-

tance function along the ribbons of the MS. In principle, an automated identification

of MS points at the center of three junctions is possible. However, in the present study

the identification was based on visual selection of the points – allowing for the detec-

tion of pseudo-three-nodes as in Fig. 7.7. Linear least square fits to planes and lines

through the three-nodes confirm the above result for the four-nodes within the limits

of the error.

It remains to be demonstrated that the two translations, a and b, are indeed con-

gruence transformations of the labyrinth, rather than only of the set of maxima and

three-nodes. The strongest evidence is provided by a superposition of the sample

under translations of integer multiples along a and b. The superposition of all, ap-

proximately 5 � 4 translational ab unitdomains (the volume given by 0 � a; b < 1,�1 < 
 <1) gives strong evidence that the data is consistent with this translational

symmetry, based on visual inspection. Quantitative measures for the similarity of the

superposed structures, based on Hausdorff-measures for example, is desirable but
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Figure 7.4: Projections of the MS of the complete experimental Triblock Copolymer dataset

onto three crystallographic planes. Continued on page 179.
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Figure 7.4 (continued): The black arrows indicate the lattice vectors. The dashed circular arcs
indicate heuristically the macroscopic bend.
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seems difficult because of noise and missing parts of the labyrinths. It is doubtful if a

figure like the Hausdorff distance (defined on page 21) provides a better indication of

the degree of symmetry than the visual inspection.

We can nevertheless quantify in a basic sense that the local shape of the labyrinth

is identical in the vicinity of the maxima. We show that the MS normals, indicating

tangency directions, and the MS distance function values, indicating thickness of the

labyrinth, are similar when compared between the different unitcells of the sample.

Figure 7.5 shows the variation of the MS normal and the distance function at the four-

and three-nodes. For the sake of simplicity the data presented are restricted to the

respective points of graph 2.

The variations of the distance function between the different four-nodes (three-nodes)

are small compared to the complete range of distance function values, approximately[0:5; 5:5℄. Similarly, the deviations of the MS normals around the averaged normal

directions among all four-nodes (three-nodes) within one plane are small with statis-

tically �10o.

The periodicity in the third direction, 
, proves more difficult to ascertain from the

available dataset. Because of the limited height of the sample, the only translation in

a linearly independent direction of a and b, for which several pairs of corresponding

points exist, is not the 
�axis of the body-centered cell. It is the translation 
0 from the

origin to the body-center in the Imm2 (Imma) spacegroup, i.e. point f1a to point f1b in

Fig. 7.1. The three lattice vectors a, b and 
0 form a monoclinic translational unitcell.

Alternatively, making the assumption that the four-nodes of graph 1 align with the

vertical edges of graph 2, and hence with the three-nodes, the 
 axis direction is deter-

mined from statistical analysis of the translations f1a ! t2b and f1a ! t2b .

Once the direction is determined, a simple trigonometric relation between the per-

pendicular distance between the maximal planes and the 
 provides the length of the

translational vector 
 in the Imm2 (or Imma orientation).

Numerical values for the directions and lengths of a, b and 
 are given in Tab. 7.1.

MS Space group more likely Fddd than Imma
As discussed on page 172, the (straight-edge) line graph model that we propose to rep-

resent the PDMS phase labyrinth can be embedded in a few different space groups.

Assuming that the deviations of � and � from �=2 are not significant, the ambiguity

reduces to a choice between the Imm2 (Imma) and the F222 (Fddd) space group with-

out (with) symmetries exchanging the two networks, see Fig. 7.2. Here we present
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Figure 7.5: Distribution of MS distances and angles between MS normals and coordinate axes

at the 4-nodes and 3-nodes of the PDMS network. Shown are distributions for the nodes at

equivalent positions (assuming Imma symmetry) to the nodes shown in Fig. 7.3, i.e. all of them

are on graph 2. The y-axes give the number of nodes in the sample with values in [x�dx; x+dx℄
intervals (dx = 0:5 for the distance function, and dx = 5o for the angles). Shown are the

distribution of distance function values and the angle between the node MS normal and the

average of all MS normals at these nodes (on this page). The diagrams on page 182 show the

distribution of the angle (in clockwise direction around the ab plane normal a� b which is

almost parallel to 
) between the node MS normal and the b-axis and the distribution of the

MS normal angle to the c-axis.(continued on page 182)
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Figure 7.5 (continued from page 181): The graphs represent normal distribution centered at
the average h:i of the distributions and of width equal to the standard deviation �: (For the
angle to the average it represents a half-normal distribution as the average is clearly zero). For
the three-down nodes, edge interval is represented by two bars, indicating the distributions
of the two separate layers in which three-downs appear on graph 2 (points in the same layer
as point 9 in Fig. 7.6 are light-gray, points in the layer of points 8 and 4 represented by black).
We attribute the bimodal nature of the distribution of angles �3 to the macroscopic bent, that
bends the normals of the lower plane (black) upwards, whereas it bends the normals of the
top plane (gray) downwards.
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arguments for both assignments, based on analysis of MS shape and MS normal di-

rections at the four- and three-nodes and the distances between pairs of three- and

four-nodes. The analysis is presented in the space groups of a single network, for the

sake of simplicity. The presented arguments slightly favour F222, although a defini-

tive conclusion cannot be made until additional datasets are analysed.

Recall the discussion of the symmetry of the two different embeddings in Fddd andImma orientation – or the equivalent space groups without the symmetry elements

exchanging the two graphs, F222 and Imm2 – on page 172.

The shape of the MS in the vicinity suggests two-fold symmetry rather than mirror

symmetry, for two reasons:

(1) The picture of a wide twisted ribbon (rather than a branched structure) that splits

up into four ribbons, radiating statistically in [011℄, [011℄, [101℄, [101℄ directions, cannot

have a mirror symmetry unless the MS shrinks to a point. Our MS computation does

not show a branched structure. The caveat of this argument is that the influence of

the small monoclinic distortion in the data (that we here assume as an artefact of the

sample preparation) on the MS shape is difficult to assess. The possibility that the MS

of the truly tetragonal MS is branched cannot be totally excluded.

(2) The MS normal at the four-nodes has to coincide with one of the horizontal two-

fold directions if F222 is the correct symmetry. If Imm2 was the correct symmetry,

the normal would have to be colinear with either of the crystallographic directions.

Fig. 7.5 shows that the angle �1 � 85o between the c-axis and the MS normal at the

four-nodes is close to �=2, that is the MS normals at the four-nodes are indeed hor-

izontal. The angle t between the MS normal and the Imm2 b-axis is 66o, hence the

normal is in between a and b, although not quite on the face diagonal of Imma (the

coordinate axes of F222). Again, the influence of the monoclinic deformation of the

data on this as is difficult to assess.

A further observation that favours the assignment of F222 as the correct space group

is the cross-sectional shape of the three-nodes, see Fig.7.3 (c). The MS ribbons near the

three-nodes are not contained in the crystallographic planes [100] and [010], but seem

to exhibit vertical two-fold symmetry around axes through the three-nodes. This is

corroborated by analysis of the angles of the MS normals with the b-axis, see Fig. 7.5.

The MS normals are horizontal9 and the angles to the b-axis of the two distinct three-

nodes are (�50 � 11)o and (110 � 6)o, and thus not vertical to the coordinate planes

(the mirror planes of Imm2). Note also that at the orientation of the normals at the

9subject to the macroscopic bend, see the Figure caption.
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two distinct three-nodes is roughly consistent with that two-fold rotation of the F222
that exchanges the two points.

A more indirect argument, that relies less on the actual shape of the MS, is provided by

analysis of the edge lengths from the four-node to the three-nodes. It is based on the

different symmetry relation of the three-nodes in the translational unitcell, discussed

on page 173. In F222 all three-nodes are at symmetrically equivalent sites; in par-

ticular the ones just above and below the maxima (e.g. points 1 and 3 in Fig.7.6) are

related by the horizontal two-fold symmetries. In Imm2 no relation between them

exists, they are free to slide along the vertical mm2 axes and point 1 and 3 are not

symmetry related. That means that the distances between the four-node and the two

three-nodes may be different from each other. An analysis of these lengths reveals

that the downward distances are slightly larger (36 � 5 and 37 � 3) than the upward

distances (32 � 3 and 28 � 3). This seems to be in favour of the Imm2 group, yet the

distances are too small to be significant given the assumption on the orthorhombicity.

On the other hand, the fact that all three-nodes seem to be of similar MS shape (ori-

entation, shape, distance function) suggests that there is a symmetry relation between

them. This is an argument in favour of F222. Besides, even if the symmetry wereImm2 and the three-nodes symmetrically distinct, one may expect the structure to as

homogeneous as possible. This is likely to yield identical edge lengths for both edges.

Finally, in a computer visualisation, a two-fold rotation of the dataset around the F222
[100] axis (corresponding to the [110] axis in Imm2) is certainly closer to being a true

congruence transform of the dataset than any mirror operation. Wether that holds

true if the deviations from orthorhmbicity are included cannot be ascertained from

our data.

In conclusion, given the deviations from orthorhombicity, that are considered to be

due to sample deformations during preparation, the MS shape does not unambi-

giously indicate the space group of the network. The observed properties of the MS

are all commensurate with an assignment of the F222 space group, but the changes

required for Imm2 are small enough to be feasible.

Evidence for the topological correctness of the MS

This last section of the description of the MS and line graph analysis of the data de-

scribes our identification of topological aspects of the labyrinth. Our assessment of

the topological structure as two intertwined disjoint 3- and 4-coordinated networks is

hampered by two issues: First, based upon visual inspection of the MS structure (and

the structure of the labyrinth) a number of pairs of dead-end channels of the data are



§7.3 Medial Surface and Channel Geometry 185

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Graph 1 Graph 2

1

2

3

4

5

6

7

8

9

Figure 7.6: Portion of the two intertwined (3,4) graphs that corresponds to slightly more than

a translational unitcell in the Imma space group. The portion that is contained within the

tomographic sample is colored in black (red) whereas the fraction that is outside of the tomo-

graphic dataset is colored gray (pink). Eight-rings Ra (1-8,1), Rb (2-5,9-12,2) and the two R

rings (6,5,9,10,13-16,6 and 8,1,2,12,17-20,8)of the first graph and one ringR
 (1-8) are contained

within the boundary of the sample. Note that a monoclinic cell, with 
 axis corresponding to

the vector from point 2 to 10 in the left image, is completely embedded in the tomographic

data.
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assumed to represent connected channels even though they are not in the dataset. Sec-

ond, the size of the dataset in 
 direction is only 1.5 unitcells of the monoclinic unitcell

(corresponding to 0.75 of the bodycentered Imm2 unitcell). Third, too a lesser degree

a few dead-end channels, of considerable length, are discarded as artefacts.

The size of the analysed dataset is strongly constrained in the 
 direction. Fig. 7.6

shows the fraction of the networks that are represented: For Graph 1 (the black one in

both Fig. 7.4 and Fig. 7.6) two vertical rings Ra and Rb and two horizontal R
 rings are

completely represented in the data, although the latter are in the very noisy boundary

regions of the dataset. For the other graph, no complete vertical ring is contained in

the dataset, but the horizontal R
 rings are embedded vertically centered within the

dataset and hence of good quality.

dead end
node

bend

Figure 7.7:

The more important source of uncertainty is the fact that many

of the graph edges do not correspond to channels in the seg-

mented binary data, i.e. there are graph edges that connect

two PDMS phase regions of the data even though there is not

a continuous connection in the binary data. The decision to

place additional edges is based on visual inspection of the in-

dividual situations, and is used here in conjunction with the

proposed model to verify if the edges of the model network

may have counterparts in the real data. An edge is assumed

to be present if the MS geometry looks as if it should be con-

tinuous rather than disjoint, leading to a connecting edge.

Often the situation is one as depicted in Fig. 7.7: The geometry

of the channels, or their MS, suggests that a connection exists.

An example is a situation where a dead-end of the PDMS phase network extends close

(but does not connect) to another part of the channel network which, in that region

near the putative node, exhibits a bent. See also Fig. 7.3 for a clear example where a

similar situation occurs in the data.

Many of the edges connecting 3-nodes to 4-nodes, particularly those near either of the

sample boundaries in the 
 direction, are of this type. As this process is nearly im-

possible to automate and involves manual assessment, it does not yield a completely

objective result.

It may be useful to compare the obtained graph structure to that obtained on a differ-

ent segmentation of the same data set. A segmentation of the same dataset that is bi-

ased more towards recognising voxels as PDMS rather than the other phase (e.g. through

a higher threshold in a simple graylevel-thresholding segmentation) should tend to
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close of most of these gaps. It has to be kept in mind though that the initial segmen-

tation was an optimal one;therefore the alternative segmentation does not only close

the gaps but also tends produces more artefacts.

Alternatively, or in addition, an erosion-dilation procedure may be used. It is a method

that swells the structure (possible merging to near dead ends) and then skins of the

same number of voxels, but preserving the new topology. If a two dead-ends connect

in the swelling to form a (thick) connection, that connection remains in intact during

the skinning. Dead-ends that almost connect should connect under application of this

procedure.

The situation where a channel that exists in the binary dataset is not represented in

the MS, due to elimination of MS faces based on angle or distance criteria, is taken

care of by comparison with a line graph obtained by topological thinning.

In summary, our claim of the network topology to be two intertwined 3- and 4-coordinated

networks relies heavily on the geometry and visual appearance of the fragments of the

labyrinths or its MS. A homotopy equivalence between the triangulation of the inter-

face surface data and the suggested graph is not in place. In particular in the boundary

areas of the dataset in 
 direction, there are many parts where the data set does not

allow for a unique identification of the topology.

Despite this caveat, using the combination of (fragmented) topological information

and the geometric shape information contained in the MS and the distance function,

we have been able to identify a consistent topological and geometric model of this

network phase. This is of particular value as X-ray or electron-scattering data for this

specific copolymer system is not available.

7.4 Discussion

Observation of a non-cubic phase in self-assembled phases in block copolymer sys-

tems is rare. Reports of non-cubic structures in other linear ABC triblock copoly-

mer systems have only been published recently [12, 54]. Their analyses employed

a variety of measurements (small-angle X-ray scattering, transmission electron mi-

croscopy, static birefringence,dynamical mechanical spectroscopy), but not electron-

tomography. Therefore the analysis presented here provides for the first time real

space data of the geometry and topology.

The network models that have been derived in those two papers are different from

the one we claim as the spatial structure. Their model is that of a single network of

three-coordinated nodes of symmetry Fddd whereas our analysis suggests a system
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of two intertwined identical networks of 3- and 4-coordinated nodes.

It is important to note that mesostructural identification based on symmetry con-

straints and analysis of TEM 2D slices only must be treated wit caution, as many

topologies can be constructed within a given symmetry. Indeed, the work of Epps et

al. seems to ignore that possibility.

The question wether the spatial structure is that of a single network or that of two

double networks of one phase (here PDMS) embedded in the matrix of the two other

phases (PS/PI) has repercussions for the self-assembly mechanism. In the case of a

double network, the possibility of self-assembly similar to the Double-Gyroid phase

is possible, with a minimal surface providing the interface that separates two mi-

crodomains of identical composition.

For a domain given by a single domain this picture does not apply in the case of ABC

triblock copolymers, as the natural location for the H = 0 interface is lacking. The

partition of space into domains is clearly an assymetric one.

From a computational point of view this chapter has demonstrated that MS computa-

tions of experimental datasets are possible and can shed light on complex morpholo-

gies whose structures are impossible to decipher otherwise. This holds true despite

the fragility of the MS construction. First, as a visual aid to a three-dimensional rep-

resentation on a computer the much sparser representation of a labyrinth, compared

to a representation as its bounding surface, makes the overall structure very easy to

discern. The MS remains a geometrical rather than a topological representation that

makes shape identification easy. An example is the identificaton of the four-nodes as

four-nodes rather than a pair of three-nodes with a small edge in between them.
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7.5 Appendix: Details of the fitting procedures

This appendix contains details of how the lattice parameters and angles were deter-

mined, for the references given in Tab. 7.1.

(a) Determination of the lattice parameters a, b and c

The error estimate for a and 
 is obtained by the following analysis: Points of maximal

distance function (the four nodes) were divided, by visual and unambiguous inspec-

tion, into planes (the 
 = 0; 1=2; and1 planes parallel to the a-b plane) and into separate

lines (along a and b). Then pairs of nearest lattice points along a (or b) were identified

and a distribution of the average edge length computed; if a simple point-point Eu-

clidean distance or distance along a fitted a (or b) vector is used makes no difference

to the significant digits. The errors indicated are the standard deviation
phl2i � hli2

of those distributions. The lattice vector 
 had to be determined in a different way, as

data was only available for the lower half of the unit cell (but a complete monoclinic

unit cell). 
 was obtained by fitting planes to the three planes of maxima, and deter-

mining the distances between these fitted planes. Then using the direction ~
 (see next

footnote), 
=2 could be determined from the distance between the two extremal planes

by dividing the normal plane-plane distance by ~N �~
 (assuming both are normalised).

The error is the mean standard deviation of the distribution of vertical deviation of

the sample points around the fitted planes divided by the same number.

(b) Euclidean coordinates of lattice directions

Euclidean coordinates are indicated here only as a reference for a reader with access to

the dataset itself. They are in units of the voxel size. For a and b, straight lines are fit-

ted to the data points representing the maxima of the EDM. The coordinates of a (andb) are the average of the fit parameters over all those lines and the errors indicated

the standard deviation. The vector 
 was obtained by assuming that the four-node of

the origin is aligned in 
 direction with the three node t2b of the second graph. The

corresponding edges in the dataset emanating from maxima of the bottom layer were

statistically analysed to give the direction of 
 and the errors as standard deviation.

The length was deducted from the distance between the three planes containing max-

ima. Only edges emanating from that plane are analysed, as edges in the other layers

seem subject to the macroscopic bent of the sample.
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(c) Normal direction to the ab planez is the normal of the ab plane. It was obtained by fitting planes ~ni � ~x = di to the

three maximal planes i = 1; 2; 3. The average of these normals is z = hnii. The three

normal vectors differ from the average by less than 1:0o. A second fit fit fixed normalz, ~z �~x = di yields the distances between the planes. The error is the standard deviation

of vertical deviations of the data points from these planes.

Crystallographic angles

Angles between coordinate axes are the angles between the directions indicated above.

The error for � was computed by identifying all triplets of data points corresponding

to four-nodes that form the angle � and computing the average angle (reproducing�) and the standard deviation as the error. For the other edges, the 
 direction was

assumed to be given as the edge connecting the 4-node at the origin to the 3-node t2b
of the second graph, and only occurrences of that edge emanating from the bottom

layer were considered (because of the macroscopic bent). Then the error in the angles

is the standard deviation of the distribution of angles between these edges and the

respective second axis plus an extra 3o for the error of the 
 direction and an extra 1o
for the errors in z, a and b direction, respectively. This is a crude estimate for the error,

yet only a bigger dataset without the macroscopic bent will help to make the estimates

narrower. An estimate for the error of � is not given, as the projection of 
 onto the ab

plane is very small, and a reliable computation of � and its error not possible.

(e) Determination of coordinates of experimental data points

The experimental coordinates were determined by treating the maxima (4-nodes) of

the bottom plane as origins and identifying the corresponding Euclidean point coordi-

nates (x; y; z) with respect to those origins. Solution of the equation xa a+xb b+x
 
 =(x; y; z) yields the crystallographic coordinates (xa; xb; x
). The given coordinates are

the averages of these crystallographic coordinates over all maxima in the bottom

plane, and the errors are their standard deviation. The uncertainty in the lattice di-

rections is not taken into account, neither are systematic deviations due to the macro-

scopic bent of the sample.



Chapter 8

Conclusion and outlook

This thesis has demonstrated that the medial surface construction is a valuable con-

cept and tool for the investigation of spatial structure in labyrinthine geometries. We

have introduced conceptually robust measures for extrinsic structure characteristics,

such as the packing homogeneity and local channel diameter, that are complimentary

to and distinct from previous measures. Because the medial surface is a skeletal rep-

resentation of a labyrinth that is geometrically complete, the medial surface is also a

robust intermediate stage for line graph algorithms. The reduction of the medial sur-

face to a line graph has been described and analysed in detail. Furthermore, using the

medial surface in combination with computer visualisation we have been able to ex-

tract shape and symmetry characteristics of complex, previously intractable 3D data

sets (from electron tomography of co-polymer network phases).

Much of this thesis has focused on analysis of infinite periodic minimal surfaces, and

continuous one-parameter families of such surfaces. For the first time, we have ex-

plicitly shown that the Gyroid is the most packing-homogeneous of the cubic Prim-

itive, Diamond and Gyroid surfaces and their tetragonal and rhombohedral distor-

tions. This result has obvious implications for the occurence of these structures in

liquid-crystalline self-assembly processes, and a more detailed applied analysis of

these repercussions is now possible. For example, semi-quantitative estimates for the

energy cost of the Diamond to Gyroid transition through the tG and tD families could

be derived from established models for the chain packing energy, under a few as-

sumptions.

The methods presented in this thesis are not restricted to this class of structures. Anal-

yses of other hyperbolic structure models (such as derived from rod-packings, multi-

continuous space partitions and non-minimal labyrinths geometries given as Fourier

series) could provide relevant comparisons for the results presented here.

An interesting extension of the methodology of this thesis is the analysis of reduced

parallel surfaces in terms of their Minkowski integrals. Reduced parallel surfaces are
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that portion of the parallel surface at distance r to an interface for which the paral-

lel distance r is less or equal to the point-wise medial surface distance function. As

shown by Mecke et al. such analysis produces relevant quantitative indicators of mor-

phology. Furthermore, they also provide the starting point for a variety of physical

models, such as for capillary condensation inside a porous medium: condensation is

supposed to occur in layers of constant thickness r on the interface between the solid

and void/vapour phase.

From a computational perspective, it is now of paramount importance to improve and

further automate the medial surface computation, in particular of tomographic data

sets. This will involve improved smoothing procedures, possibly with a feed-back

loop involving medial surface as well as curvature computations. Judging from our

experience with the electron tomography data set, this should be a feasible project

worth doing.

It will be a combination of understanding the medial surface of a larger group of

model labyrinth structures with analysis of medial surfaces of experimental data sets

that will determine the usefulness of this appealing geometric construction.



Description of color scheme used in

illustrations

A convenient way to indicate distance function values in computer-visualisations of

the MS consists in the following schemes that are used throughout this thesis: Two

related but slightly different ways of using a color scheme to indicate the distance

function on a surface S are used throughout this thesis. Both use the function hue(x)
for x 2 [0; 1) which produces the colors purple, pink, red, orange, yellow, cyan, blue

(in that order) as x increases from 0 to 1. First, as for example in Fig. 5.7, the distance

function on the surface maybe rescaled so that the maximum value gives x = 1 and

the minimum value x = 0. The disadvantage of this scheme is the poor resolution, as

small variations may not be visible. The second scheme overcomes that problem: the

distance function is now rescaled so that the minimum again corresponds to x = 0,

but the maximum to some large integer n, for example n=30 in Fig. 3.6. With varying

distance function values the surface color iterates through the above color sequencen times, generating iso-distance lines. Critical points are (visually) easy to detect:

minima (maxima) are enclosed by a ring of iso-distance (or contour) lines of increasing

(decreasing) distance/color. Saddle points correspond to separatrices.
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