Bicontinuous phases and self-assembled networklike nanostructures
Occurence and formation Gyroid nanostructures in green butterflies
(For optical properties, see ‘Gyroid photonics‘ page)
- B.D. Wilts, B. Apeleo Zubiri, M.A. Klatt, B. Butz, M.G. Fischer, S.T. Kelly, E. Spiecker, U. Steiner, G.E. Schröder-Turk, “Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development“, Sci. Adv. 3, e1603119 (2017)
- B.D. Wilts, P.L. Clode, N.H. Patel, G.E. Schröder-Turk, “Nature’s functional nanomaterials: Growth or self-assembly?“, MRS Bulletin 44(2) issue on ‘Bioinspired Far-From-Equilibrium Materials’, 106-112, February issue (2019)
- B. Winter, B. Butz, C. Dieker, G.E. Schröder-Turk, K. Mecke, E. Spieker, “Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi“, Proceedings of the National Academy of Sciences 112(42), 12911-12916 (2015)
- G.E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. Fitz-Gerald, L. Poladian, M.C. Large and S.T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi”, J. Struct. Biol. 174, 290-295 (2011)
Bicontinuous phases in largely entropy-driven particle systems
- P.A. Schönhöfer, D. Cleaver and G.E. Schröder-Turk, “Double diamond phase in pear-shaped nanoparticle systems with hard sphere solvent“, Journal of Physics D: Applied Physics 51(46), 464003 (2018)
- Philipp W. A. Schönhöfer, Laurence J. Ellison, Matthieu Marechal, Douglas J. Cleaver, and Gerd E. Schröder-Turk, “Purely Entropic Self-Assembly of the Bicontinuous Ia3d Gyroid-Phase“, Interface Focus 7(3), 20160161 (2017)
Poly-continuous copolymer phases and self-consistent field theory
(see ‘Gyroid Photonics section’ for poly-continuous designs for photonic materials)
- M.G. Fischer, L. de Campo, J.J.K. Kirkensgaard, S.T. Hyde, and G.E. Schröder-Turk, “The tricontinuous 3ths(5) phase: a new morphology in copolymer melts”, Macromolecules 47, 7424-7430 (2014)
- M.G. Fischer, S.T. Hyde, G.E. Schröder-Turk, “Comment on ‘Discovery of a tetracontinuous aqueous lyotropic network phase with unusual 3D-hexagonal symmetry’”, Softmatter 11, 1226-1227 (2015)
Homogeneity, medial surface and shape-parameter analyses for the formation of bicontinuous and poly-continuous phases
- G.E. Schröder-Turk, L. de Campo, M.E. Evans, M. Saba, S.C. Kapfer, T. Varslot, K. Grosse-Brauckmann, S. Ramsden and S.T. Hyde, Polycontinuous geometries for inverse surfactant phases with more than two aqueous network domains , Faraday Discussions 161, 215-247 (2013)
- G.E. Schröder-Turk, T. Varslot, L. de Campo, S.C. Kapfer and W. Mickel, “A bicontinuous lipid mesophase geometry with hexagonal symmetry”, Langmuir 27(17), 10475–10483 (2011)
- G.E. Schröder, S.J. Ramsden, A.G. Christy and S.T. Hyde, “Medial Surfaces of Hyperbolic Structures”, Eur. Phys. J. B 35, 551-564 (2003)
- G.E. Schröder-Turk, A. Fogden, and S.T. Hyde, “Local v/a variations as a measure of structural packing frustration in bicontinuous mesophases, and geometric arguments for an alternating Im(-3)m (IWP) phase in block-copolymers with polydispersity” , Eur. Phys. J. B 59 , 115-126 (2007)
- G.E. Schröder, “Skeletons in the Labyrinth – Medial Representations and packing properties of bicontinuous space partitions” , PhD thesis, Australian National University (2005)
Transformation and phase transformation geometries for bicontinuous phases
- G.E. Schröder-Turk, A. Fogden and S.T. Hyde, “Bicontinuous geometries and molecular self-assembly: comparison of local curvature and global packing variations in genus-three cubic, tetragonal and rhombohedral surfaces”, European Journal of Physics B 54, 509-524 (2006)
- W. Mickel, G.E. Schröder-Turk and K. Mecke, “Tensorial Minkowski Functionals of Triply-Periodic Minimal Surfaces”, J. Roy. Soc. Interf. Focus, doi: 10.1098/rsfs.2012.0007 (2012)
- G.E. Schröder, A. Fogden and S.T. Hyde, “A rhombohedral family of minimal surfaces as a pathway between the P and D cubic mesophases”, Physica A 339, 137-144 (2004)
Nuclear pasta phases (Bicontinuous structures in computational models for nuclear matter)
- B. Schuetrumpf, M.A. Klatt, K. Iida, G.E. Schröder-Turk, J.A. Mahrun, K. Mecke and P.-G. Reinhard, “Appearance of the single gyroid network phase in ‘nuclear pasta’ matter”, Physical Review C 91, 025801 (2015)
- B. Schuetrumpf, M.A. Klatt, K. Iida, G.E. Schröder-Turk, J.A. Maruhn, K. Mecke, P.G. Reinhard, “Minimal surfaces in nuclear pasta with time-dependent Hartree-Fock approach”, Proc. of the 52th international winter meeting on nuclear physics, 27-31 January 2014, Bormio/Italy (2014)
Material properties induced by bicontinuous structure
(For optical properties, see ‘Gyroid photonics‘ page)
- R.G.E. Kimber, A.B. Walker, G.E. Schröder-Turk and D.J. Cleaver, “Bicontinuous minimal surface nanostructures for polymer blend solar cells”, Phys. Chem. Chem. Phys. 12, 844 (2010)
- S.C. Kapfer, S.T. Hyde, K. Mecke, C.H. Arns, and G.E. Schröder-Turk, “Minimal surface scaffold designs for tissue engineering”, Biomaterials 32(29), 6875-6882 (2011)
- G.E. Schröder-Turk, T. Varslot, L. de Campo, S.C. Kapfer and W. Mickel, “A bicontinuous lipid mesophase geometry with hexagonal symmetry”, Langmuir 27(17), 10475–10483 (2011)
Overview and editorial articles
- S.T. Hyde, G.E. Schröder-Turk, M.E. Evans and B.D. Wilts, “Emergence and function of complex form in self-assembly and biological cells“, Interface Focus 7(4), 20170035, not peer-reviewed (2017)
- S.T. Hyde and G.E. Schröder-Turk, “Geometry of Interfaces: topological complexity in biology and materials”, Editorial and Introduction for issue of Interface Focus 5, organized by S.T. Hyde and G.E. Schröder-Turk, Interface Focus 2(5), 529-538 (2012)
- S.T. Hyde and G.E. Schröder, “Novel surfactant mesostructural topologies: between lamellae and columnar (hexagonal) forms”, Curr. Opin. Colloid Interf. Sci. 8, 5-14 (2003)
- M.E. Evans & G.E. Schröder-Turk, “In a material world: hyperbolic geometry in biological materials”, Asia Pacific Mathematics Newsletter, Issue 2, September 2015 (popular science, not referreed, pdf)
- M.E. Evans and G.E. Schröder-Turk, “In a material world: Hyperbolische Geometrie in biologischen Materialien”, Mitteilungen der Deutschen Mathematiker-Vereinigung 22(3), 158-166 (2014)